一种多孔活性碳材料负载钴纳米粒子材料及其制备方法和应用

    公开(公告)号:CN107159214A

    公开(公告)日:2017-09-15

    申请号:CN201710480109.3

    申请日:2017-06-22

    Abstract: 本发明公开了一种多孔活性碳材料负载钴纳米粒子材料,由葡萄糖和含氮化合物,通过水热法和后续处理制备得多孔结构碳材料,然后通过浸渍化学还原法负载钴粒子到碳材料上得到,其比表面积的范围为3026~3277 m2 g‑1,微孔含量超过95.18%,孔径分布均一,主要分布在1.24~1.95 nm。其制备方法包括3个步骤:1)制备含氮前驱体;2)制备多孔结构碳材料;3)负载钴纳米粒子。本发明作为催化氨硼烷水解放氢催化剂的应用时,10 min完成放氢,放氢速率达到865.2 mL min‑1 g‑1;可循环使用,经历四次循环后,放氢时间保持在10~45min,放氢速率保持在208.2‑865.2 mL min‑1 g‑1。本发明材料制备方法简单、生产成本低、可回收重复使用、实用性强,在制氢、燃料电池等领域具有广阔的应用前景。

    一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用

    公开(公告)号:CN105148918A

    公开(公告)日:2015-12-16

    申请号:CN201510387974.4

    申请日:2015-07-05

    Abstract: 本发明公开了一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用。步骤如下:(1)将硫酸镍、柠檬酸钠加入到水溶液中;(2)将溶液进行超声;(3)称取NaBH4,加入水中;(4)将NaBH4水溶液加到步骤(2)的水溶液中;(5)称取氯化钴,加入水中;(6)将氯化钴水溶液加入步骤(4)的溶液中,继续超声;(7)称取NaBH4,加入水中;(8)将NaBH4溶液加到步骤(6)的水溶液中;(9)滴加完成后,再让溶液反应1小时,过滤、洗涤、干燥,得到Co-B/Ni-B非晶纳米球复合合金催化剂。本发明的催化剂纳米球复合结构,使其活性得到显著提高,提高了反应速率,而且制备工艺比较简单,制造成本低。

    一种Ni-P-B纳米球合金催化剂的制备方法及其应用

    公开(公告)号:CN104549384A

    公开(公告)日:2015-04-29

    申请号:CN201410808502.7

    申请日:2014-12-23

    Abstract: 本发明公开了一种Ni-P-B纳米球合金催化剂的制备方法及其应用。步骤如下:(1)将硫酸镍、次亚磷酸钠、柠檬酸、醋酸钠加入到水溶液中,搅拌均匀;(2)将步骤(1)得到的水溶液加热到70~90℃,调节pH值至5~7;(3)称取NaBH4,加入到水中,得到NaBH4水溶液;(4)将NaBH4水溶液缓慢滴加到步骤(2)的水溶液中,边滴加边搅拌,滴加完后,停止加热;(5)停止加热后,再让溶液反应2小时,过滤、洗涤、干燥,得到Ni-P-B纳米球合金催化剂。本发明的催化剂比表面积大,增大了催化剂与反应物的接触面积,提高了反应速率,而且制备工艺比较简单,制造成本低,对应用于硼氢化物水解有很大的优势。

    一种基于绣球花状NiO/KNbO3的MgH2复合材料及其制备方法和应用

    公开(公告)号:CN116462156B

    公开(公告)日:2024-08-06

    申请号:CN202310389224.5

    申请日:2023-04-12

    Abstract: 本发明公开了一种基于绣球花状NiO/KNbO3的MgH2复合材料,由NiO/KNbO3和MgH2球磨而得,所述NiO/KNbO3中,片状KNbO3为基底,在片状KNbO3表面生长NiO,形成绣球花状结构,NiO是通过NiCl2·6H2O、NH4F和尿素水热反应并煅烧得到;所述NiO/KNbO3的微观形貌为绣球花状结构。其制备方法包括以下步骤:1,KNbO3的制备;2,绣球花状NiO/KNbO3的制备;3,MgH2‑NiO/KNbO3复合材料的制备。作为储氢材料的应用,初始放氢温度为163‑212℃,放氢量为5.8‑6.7wt%;10次循环后的保持率为98%。本发明具有以下优点:片状KNbO3同时具备支撑作用和催化作用,与与表面NiO产生协同作用;所用原料市售可得,工艺简单,实现低能耗,低污染。

    一种基于PCS的阻燃脲醛树脂及其制备方法和应用

    公开(公告)号:CN118374122A

    公开(公告)日:2024-07-23

    申请号:CN202410058665.1

    申请日:2024-01-15

    Abstract: 本发明公开了一种基于PCS的阻燃脲醛树脂,以植酸‑壳聚糖复合高分子PCS为生物基阻燃成分,尿素、甲醛为主要原料,三聚氰胺、聚乙烯醇‑124为助剂,邻苯二甲酸二辛酯DOP为增塑剂,氯化铵和聚磷酸铵为复合固化剂;抗冲击强度为1.1KJ/m2。其制备方法包含以下步骤:1,植酸‑壳聚糖PCS的制备;2,脲醛树脂乳液MUF的制备;3,阻燃脲醛树脂MUF/PCS/APP的制备。作为阻燃材料的应用,具有阻燃性质,在UL‑94等级测试中,通过UL‑94V‑0等级测试;在极限氧指数测试中,极限氧指数为36%;分解质量为5%时的温度为237.3℃,达到最大分解速率时的温度为294.1℃;在800℃时的残炭量为37.8wt.%,完全燃烧后的残炭炭层连续致密,没有明显的裂纹,且不存在孔洞。

    一种中空微球状MXene/Sn-S/PANI复合材料及其制备方法和应用

    公开(公告)号:CN117890438A

    公开(公告)日:2024-04-16

    申请号:CN202410067002.6

    申请日:2024-01-17

    Abstract: 本发明公开了一种中空微球状MXene/Sn‑S/PANI复合材料,由MXene球、Sn‑S和PANI复合而得,MXene由二维片状转变为微球状,MXene/Sn‑S为微球状,表面负载大小均匀的Sn‑S纳米片,再在MXene/Sn‑S外面包覆PANI,即可得到中空微球状MXene/Sn‑S/PANI复合材料,粒径尺寸为1.5‑2μm。其制备方法包括以下步骤:1,MXene微球的制备;2,Sn‑S的负载;3,PANI的包覆。一种基于MXene/Sn‑S/PANI传感器的制备方法,所得基于MXene/Sn‑S/PANI传感器在室温和湿度45%条件下,对100ppm NH3响应率为60‑120%,响应时间为220‑230s,恢复时间为270‑280s;在湿度为0‑90%条件下,对100ppm NH3响应率为10‑220%。作为未知氨气浓度传感器的应用时,包括以下步骤:a,标准浓度数据的获得;b,未知浓度的测定。

    一种Co/Ni比为3:1的羧基化CNTs负载CoNiB复合材料及其制备方法和应用

    公开(公告)号:CN114713230B

    公开(公告)日:2024-04-12

    申请号:CN202210598396.9

    申请日:2022-05-30

    Abstract: 本发明公开了一种Co/Ni比为3:1的羧基化CNTs负载CoNiB复合材料,以羧基化CNTs、六水氯化钴、六水氯化镍、三乙胺、无水乙醇、水和硼氢化钠为原料,采用在冰水条件下硼氢化钠原位还原的方法,其中三乙胺起到将金属预锚定于羧基化CNTs的作用,其中,所述六水氯化钴和六水氯化镍的质量比为3:1;所得材料的微观形貌为,CoNiB生长在羧基化CNTs表面,羧基化CNTs贯穿于整个复合材料之中;其表面积为70‑120 m2 g‑1,孔径分布为3‑5 nm和30‑35 nm。作为催化硼氢化钠水解产氢催化剂的应用,在298 k条件下提供的产氢速率达到6100‑6500 ml min‑1 gcatalyst‑1,产氢量为理论值的100%,催化产氢的活化能为Ea=27‑29 kJ mol‑1;循环10次后的产氢速率为初始产氢速率的70‑75%。

    一种结构稳定的MXene复合材料及其制备方法和应用

    公开(公告)号:CN111777069B

    公开(公告)日:2022-12-23

    申请号:CN202010695464.4

    申请日:2020-07-20

    Abstract: 本发明公开了一种结构稳定的MXene复合材料,由Ti3C2 Mxene、MoS2和Cu2O构成;其中,Ti3C2 MXene为基体材料,微观形貌为类手风琴状结构,作用是提供多层结构;MoS2的微观结构为纳米片结构,负载于Ti3C2 MXene的表面,作用是提供额外赝电容;Cu2O的微观结构为立方晶体结构,嵌入Ti3C2 MXene多层结构的间隙中,作用是稳定Ti3C2 MXene的多层结构。以Ti3AlC2、钼酸铵、可溶性硫化物、硫酸铜和氢氧化钠为起始原料,经刻蚀、水热和静置沉淀自组装制得。其制备方法包括以下步骤:1)Ti3C2 MXene的制备;2)Ti3C2 MXene‑MoS2的制备;3)Ti3C2 MXene‑MoS2‑Cu2O的制备。作为超级电容器电极材料的应用,在0‑0.55 V范围内充放电,在放电电流密度为1 A g‑1时,比电容为1400‑1500 F g‑1;在3000圈循环后的循环稳定性为92%。

Patent Agency Ranking