一种磁性金属构件表面应力集中区及微裂纹的磁探测方法

    公开(公告)号:CN105203629B

    公开(公告)日:2018-11-02

    申请号:CN201510615820.6

    申请日:2015-09-24

    Applicant: 三峡大学

    Abstract: 一种磁性金属构件表面应力集中区及微裂纹的磁探测方法,在金属表面的方向施加一个一定强度的交变磁场,用磁传感器探测金属近表面各处的弱磁信号;通过锁相技术对探测到的弱磁信号进行处理,依据应力集中区表面弱磁信号的特点来提取与应力集中区相关的特征信号,获得对应于应力集中区或微裂纹处的磁信号大小;最后利用计算机绘图获得金属表层应力集中区分布图,并给出应力集中区大小、强度、形状的定量关系,从而对金属构件可能发生的断裂地点进行早期预警。本发明一种磁性金属构件表面应力集中区及微裂纹的磁探测方法,依据应力集中区表面弱磁信号的特点来绘制应力集中区的分布图,并给出应力集中区大小、强度、形状的定量关系,从而对金属构件可能发生的断裂地点进行早期预警。

    空间小磁体悬浮控制方法

    公开(公告)号:CN105577035A

    公开(公告)日:2016-05-11

    申请号:CN201610090217.5

    申请日:2016-02-18

    Applicant: 三峡大学

    CPC classification number: H02N15/00

    Abstract: 本发明公开了一种空间小磁体悬浮控制方法,涉及空间磁场的控制方法技术领域。所述方法包括如下步骤:1)构建小磁体悬浮控制系统,所述悬浮控制系统包括若干组位置控制线圈、若干组姿态控制线圈和小磁体;2)通过改变位置控制线圈中通电电流的大小及方向,来改变小磁体在所述悬浮控制系统中的位置,通过改变姿态控制线圈中通电电流的大小及方向,来改变小磁体的姿态。所述方法通过控制线圈电流大小来实现对空间悬浮小磁体的姿态和位置进行精确控制。

    一种磁性金属构件表面应力集中区及微裂纹的磁探测方法

    公开(公告)号:CN105203629A

    公开(公告)日:2015-12-30

    申请号:CN201510615820.6

    申请日:2015-09-24

    Applicant: 三峡大学

    Abstract: 一种磁性金属构件表面应力集中区及微裂纹的磁探测方法,在金属表面的方向施加一个一定强度的交变磁场,用磁传感器探测金属近表面各处的弱磁信号;通过锁相技术对探测到的弱磁信号进行处理,依据应力集中区表面弱磁信号的特点来提取与应力集中区相关的特征信号,获得对应于应力集中区或微裂纹处的磁信号大小;最后利用计算机绘图获得金属表层应力集中区分布图,并给出应力集中区大小、强度、形状的定量关系,从而对金属构件可能发生的断裂地点进行早期预警。本发明一种磁性金属构件表面应力集中区及微裂纹的磁探测方法,依据应力集中区表面弱磁信号的特点来绘制应力集中区的分布图,并给出应力集中区大小、强度、形状的定量关系,从而对金属构件可能发生的断裂地点进行早期预警。

    高精度光学位移磁悬浮加速度计

    公开(公告)号:CN105738653A

    公开(公告)日:2016-07-06

    申请号:CN201610090220.7

    申请日:2016-02-18

    Applicant: 三峡大学

    CPC classification number: G01P15/032

    Abstract: 本发明公开了一种高精度光学位移磁悬浮加速度计,用于测量飞行器的线性加速度。包括真空磁屏蔽腔系统、光学相干位移检测系统、磁悬浮控制系统和小磁体检验质量块。所述加速度计采用光学相干位移检测技术来实现对小磁体检验质量块位置和姿态的实时精确测量,采用磁悬浮控制技术来实现对小磁体检验质量块位置和姿态的精确回归控制,从而将小磁体检验质量块始终控制在腔室中心;当空间飞行器受到外界非保守力作用时,由于飞行器的加速度将正比于位置控制线圈的电流大小,最终通过位置控制线圈电流的测量即可精确测量加速度的大小和方向。所述加速度计可以避开高精度机械加工的技术瓶颈,制作工艺简单,可以实现更高精度的加速度矢量测量。

    高精度静磁悬浮加速度计

    公开(公告)号:CN105675920B

    公开(公告)日:2018-11-13

    申请号:CN201610090218.X

    申请日:2016-02-18

    Applicant: 三峡大学

    Abstract: 本发明公开了一种高精度静磁悬浮加速度计,用于测量飞行器的线性加速度。包括真空磁屏蔽腔系统、磁场位移传感系统、静磁悬浮控制系统和检验磁体。所述加速度计采用磁场位移传感技术来实现对检验磁体位置和姿态的实时精确测量,采用静磁悬浮控制技术来实现对检验磁体位置和姿态的精确回归控制,从而将检验磁体始终控制在腔室中心,同时也是空间飞行器的质心位置;当空间飞行器受到外界非保守力作用时,由于飞行器的加速度将正比于位置控制线圈的电流大小,最终通过位置控制线圈电流的测量即可精确测量加速度的大小和方向。所述加速度计可以避开高精度机械加工的技术瓶颈,制作工艺简单,可以实现更高精度的加速度矢量测量。

    高精度光学位移磁悬浮加速度计

    公开(公告)号:CN105738653B

    公开(公告)日:2019-01-29

    申请号:CN201610090220.7

    申请日:2016-02-18

    Applicant: 三峡大学

    Abstract: 本发明公开了一种高精度光学位移磁悬浮加速度计,用于测量飞行器的线性加速度。包括真空磁屏蔽腔系统、光学相干位移检测系统、磁悬浮控制系统和小磁体检验质量块。所述加速度计采用光学相干位移检测技术来实现对小磁体检验质量块位置和姿态的实时精确测量,采用磁悬浮控制技术来实现对小磁体检验质量块位置和姿态的精确回归控制,从而将小磁体检验质量块始终控制在腔室中心;当空间飞行器受到外界非保守力作用时,由于飞行器的加速度将正比于位置控制线圈的电流大小,最终通过位置控制线圈电流的测量即可精确测量加速度的大小和方向。所述加速度计可以避开高精度机械加工的技术瓶颈,制作工艺简单,可以实现更高精度的加速度矢量测量。

    空间小磁体悬浮控制方法

    公开(公告)号:CN105577035B

    公开(公告)日:2017-07-14

    申请号:CN201610090217.5

    申请日:2016-02-18

    Applicant: 三峡大学

    Abstract: 本发明公开了一种空间小磁体悬浮控制方法,涉及空间磁场的控制方法技术领域。所述方法包括如下步骤:1)构建小磁体悬浮控制系统,所述悬浮控制系统包括若干组位置控制线圈、若干组姿态控制线圈和小磁体;2)通过改变位置控制线圈中通电电流的大小及方向,来改变小磁体在所述悬浮控制系统中的位置,通过改变姿态控制线圈中通电电流的大小及方向,来改变小磁体的姿态。所述方法通过控制线圈电流大小来实现对空间悬浮小磁体的姿态和位置进行精确控制。

    高精度静磁悬浮加速度计

    公开(公告)号:CN105675920A

    公开(公告)日:2016-06-15

    申请号:CN201610090218.X

    申请日:2016-02-18

    Applicant: 三峡大学

    CPC classification number: G01P15/105

    Abstract: 本发明公开了一种高精度静磁悬浮加速度计,用于测量飞行器的线性加速度。包括真空磁屏蔽腔系统、磁场位移传感系统、静磁悬浮控制系统和检验磁体。所述加速度计采用磁场位移传感技术来实现对检验磁体位置和姿态的实时精确测量,采用静磁悬浮控制技术来实现对检验磁体位置和姿态的精确回归控制,从而将检验磁体始终控制在腔室中心,同时也是空间飞行器的质心位置;当空间飞行器受到外界非保守力作用时,由于飞行器的加速度将正比于位置控制线圈的电流大小,最终通过位置控制线圈电流的测量即可精确测量加速度的大小和方向。所述加速度计可以避开高精度机械加工的技术瓶颈,制作工艺简单,可以实现更高精度的加速度矢量测量。

Patent Agency Ranking