磁场控制的磁性纳米线的测量方法

    公开(公告)号:CN113759152B

    公开(公告)日:2024-03-12

    申请号:CN202110903400.3

    申请日:2021-08-06

    申请人: 三峡大学

    IPC分类号: G01R1/04 G01B11/02 B82Y35/00

    摘要: 一种磁场控制的磁性纳米线的测量方法,依次通过配置磁性纳米线制备溶液、进行磁性纳米线的制备与分散、制作指状电极的光刻与刻蚀、操作平台的搭建、进行磁性纳米线的桥接,最后进行磁性纳米线的观察及测量:利用磁场对磁性纳米线的引导与排列作用,以实现磁性纳米线在指状电极上的自组装(桥接),其中磁场为定向磁场,大小为30~500 mT。指状电极的条形电极单元宽度为2~10μm,长度为50~200μm。本发明利用指状电极对磁性纳米线进行测量,具有操作简单、实验条件简单、容易实现、方向可控的优点。

    一种车底式电动汽车无线充电系统

    公开(公告)号:CN109228900B

    公开(公告)日:2023-10-27

    申请号:CN201810871618.3

    申请日:2018-08-02

    申请人: 三峡大学

    IPC分类号: B60L53/12 B60L53/38

    摘要: 一种车底式电动汽车无线充电系统,包括动力部分、移动充电平台、气压控制部分、位于电动汽车底部的无线充电接收部分。所述无线充电接收部分包括无线充电接收线圈,无线充电接收线圈的四角设有永磁体;所述移动充电平台顶部设有无线充电发射线圈,其四角设有与所述永磁体相对应的磁场传感器。所述动力部分通过连杆与移动充电平台相连接,气压控制部分通过气压管路与移动充电平台相连接。所述无线充电接收线圈与无线充电发射线圈通过电磁感应交换能量,将充电站内的电能转移到汽车蓄电池中。本发明无线充电系统不仅为未来电动汽车的高效率无线充电提供新的技术参考,而且可预防电动汽车无线充电过程中对周边环境的影响。

    一种迈克尔逊干涉式光纤加速度传感器

    公开(公告)号:CN106940387B

    公开(公告)日:2023-10-27

    申请号:CN201710229546.8

    申请日:2017-04-10

    申请人: 三峡大学

    IPC分类号: G01P15/093

    摘要: 一种光纤迈克尔逊干涉式加速度传感器,包括筒体、上限位销、第一准直器、光耦合器、下限位销、质量块、第二准直器、环形磁体;光隔离器、激光光源、光电探测器和相位解调电路。本发明将质量块设计成迈克尔逊干涉仪自由空间光路的一部分,利用静磁排磁通效应将质量块置于悬浮状态,将外界加速度变化转化为质量块的微小位移,再通过差分式光纤迈克尔逊干涉装置检测质量块位移引起的相位变化,实时解调传感器的加速度变化。该传感器采用磁悬浮方式规避机械阻尼的影响,引入双反射法拉第旋光结构消除偏正衰落的影响,具有灵敏度高,稳定性好,体积小,制作简单等优点,具有较好的应用前景。

    一种非平衡光纤迈克尔逊干涉仪臂长调节装置

    公开(公告)号:CN106950673B

    公开(公告)日:2023-04-07

    申请号:CN201710229533.0

    申请日:2017-04-10

    申请人: 三峡大学

    IPC分类号: G02B7/00 G02F1/09 G01J9/02

    摘要: 一种非平衡光纤迈克尔逊干涉仪臂长调节装置,包括千分尺筒体、光耦合器、法拉第磁环、压电陶瓷环、千分尺游标、第一准直器、第二准直器。本发明将法拉第磁环设计成一维自由结构,旋转千分尺改变自由臂的位置,在um~cm级范围内进行臂差调节,结合电控压电陶瓷对法拉第磁环进行nm~um级精密调节,灵活改变迈克尔逊干涉仪的臂长差。该调节装置具有量程大,调节精度高,响应速度快,结构简单等优点,具有良好的应用前景。

    合金中磁场诱导相变温度移动的测量计算方法

    公开(公告)号:CN108398462B

    公开(公告)日:2020-09-01

    申请号:CN201810123680.4

    申请日:2018-02-07

    申请人: 三峡大学

    IPC分类号: G01N27/04 G01N33/20

    摘要: 本发明公开了一种变磁性马氏体相变哈斯勒合金中磁场诱导相变温度移动的测量计算方法,1)将试样放入振动样品磁强计并抽真空;2)加载到能发生磁场诱导的马氏体相变大小的磁场HM,并等待磁场稳定;3)在步骤2)确定的磁场下,设定测试温度,设定磁场从‑HM到0,和0到HM的连续扫场,测试试样的电阻R随磁场变化的R‑H曲线;4)在步骤2)确定的磁场下,更改测试温度,重复步骤3)的测试过程;5)根据步骤4)获取的各个温度下的R‑H曲线,计算不同温度下磁场诱导相变温度移动的大小。本发明利用相变过程中磁输运性质在各个相变阶段的不同特点所导致的宏观上的电阻变化,来分析计算相变温度移动的;所需测试数据少,计算方法简单、结果可靠。

    一种基于磁流变效应的旋转式防冲击电流开关装置

    公开(公告)号:CN108735548B

    公开(公告)日:2020-06-09

    申请号:CN201810410232.2

    申请日:2018-05-02

    申请人: 三峡大学

    IPC分类号: H01H36/00

    摘要: 一种基于磁流变效应的旋转式防冲击电流开关装置,包括设置在两个磁铁中间的、封装有磁流变材料的封闭式绝缘体方盒,封闭式绝缘体方盒上、下两面分别为金属电极,金属电极连接导线。所述封闭式绝缘体方盒的前、后、左、右四个面为绝缘面;其中前、后两个面分别连接旋转轴。所述封闭式绝缘体方盒为扁平方形体。本发明一种基于磁流变效应的旋转式防冲击电流开关装置,该装置通过控制磁流变材料部分旋转角度,来调节外界施加的磁场方向,从而达到开关通断的目的,以控制旋转速度来调节通断快慢。本发明具有结构简单,稳定可靠,可逆性好等优点。

    一种用于大型海底管道健康诊断的探触式检测设备

    公开(公告)号:CN110056743A

    公开(公告)日:2019-07-26

    申请号:CN201910446498.7

    申请日:2019-05-27

    申请人: 三峡大学

    摘要: 一种用于大型海底管道健康诊断的探触式检测设备,包括前撑壁装置、清洗平台、扫描平台、后撑壁装置及第一阻尼连接环、第二阻尼连接环、第三阻尼连接环;前撑壁装置与清洗平台之间通过第一阻尼连接环连接,清洗平台与扫描平台之间通过第二阻尼连接环连接,扫描平台与后撑壁装置之间通过第三阻尼连接环连接;所述前撑壁装置与后撑壁装置的结构相同,设于设备的两端,在撑壁装置及后撑壁装置上设有多个液压支撑杆;所述扫描平台上设有多个可伸缩的探针;所述清洗平台上设有物理清洗设备及超声波清洗设备。本发明克服现有技术中管道壁磁化难度大、成像分辨率低、仪器操控困难等难题,研制一种用于大型海底管道健康诊断的探触式检测设备。

    一种基于各向异性磁电阻效应的单轴MEMS加速度计

    公开(公告)号:CN106706959B

    公开(公告)日:2019-02-05

    申请号:CN201611031239.0

    申请日:2016-11-22

    申请人: 三峡大学

    IPC分类号: G01P15/12

    摘要: 本发明公开一种基于各向异性磁电阻效应的单轴MEMS加速度计,所述单轴MEMS加速度计包括:晶圆框体,所述晶圆框体的内部空间为封闭的框室;支撑梁,所述支撑梁设置于所述框室内,且所述支撑梁的一端连接在所述框室的横框内壁上;检验质量块,所述检验质量块设置在所述支撑梁的另一端;磁源,所述磁源设置在所述框室的竖框内壁上;AMR芯片,所述AMR芯片安装于所述检验质量块上,所述AMR芯片的中心与所述磁源的中心在同一水平线上,使得所述AMR芯片的磁敏感方向与所述磁源的磁矩方向相同,且所述检验质量块的位移方向与磁矩方向在同一条直线上,以保证AMR芯片只感受到单一方向的磁场。本发明单轴MEMS加速度计可提高加速度的测量精度和测量范围。

    一种基于巨磁电阻效应的单轴MEMS加速度计

    公开(公告)号:CN106338618B

    公开(公告)日:2019-01-29

    申请号:CN201611032241.X

    申请日:2016-11-22

    申请人: 三峡大学

    IPC分类号: G01P15/12

    摘要: 本发明公开了一种基于巨磁电阻效应的单轴MEMS加速度计,包括:晶圆外框,包括相互垂直的横框和竖框;磁源,固定设于所述竖框上;检验质量块,由一垂直设于所述横框上的支撑梁支撑;巨磁阻芯片,安装于所述检验质量块上,所述巨磁阻芯片的中心点到所述横框的距离与所述磁源的中心点到所述横框的距离相等,巨磁阻芯片的磁敏感方向与磁源的磁矩方向相同,且检验质量块在加速度作用下的位移方向与磁矩方向在同一直线上。该基于巨磁电阻效应的单轴MEMS加速度计具有精度高、测量范围大的优点。

    一种光纤光栅温度应变混合光缆
    10.
    发明公开

    公开(公告)号:CN109239840A

    公开(公告)日:2019-01-18

    申请号:CN201811185773.6

    申请日:2018-10-11

    申请人: 三峡大学

    摘要: 一种光纤光栅温度应变混合光缆,包括金属管和传感光纤;金属管的内壁设有固定点和掩埋区,传感光纤和金属管在固定点和掩埋区固定;掩埋区内有应变传感点,固定点之间有温度传感点;相邻固定点或固定点与掩埋区之间的光纤长度大于或等于金属管长度的101%。采用金属管作为加强件来保护光纤光栅不受损伤,灵活设置应变传感点和温度传感点。其中,变传感点与金属管粘接成为一体,可以监测金属管上的应变;温度传感点两端留有冗余;当金属管受力时,冗余可以抵消应变的影响,实现免应力的温度监测。与此同时,应变传感点受到的温度影响也可由相邻的温度传感点进行补偿。该光缆结构简单,不仅解决了温度应变的交叉影响,同时还实现了一根缆上的温度、应变的多参数测量,在光纤光栅传感领域具有重要的应用价值。