石墨烯/碳纳米管/聚苯胺复合材料的制备方法及应用

    公开(公告)号:CN111138661B

    公开(公告)日:2022-08-23

    申请号:CN202010060641.1

    申请日:2020-01-19

    摘要: 本发明涉及一种石墨烯/碳纳米管/聚苯胺复合材料的制备方法及应用,包括以下步骤:将氧化石墨烯进行草酸化改性获得改性氧化石墨烯;然后将改性氧化石墨烯分散于水中获得改性氧化石墨烯悬浮液,加入浓盐酸;加入苯胺单体,超声分散均匀,进行预反应获得苯胺修饰的石墨烯;向苯胺修饰的石墨烯中加入碳纳米管、活性MnO2和过硫酸铵,进行氧化聚合反应;将反应后的物料经过固液分离、洗涤、干燥得到HCl掺杂的复合材料;向HCl掺杂的复合材料中加入氨水和水合肼进行脱掺杂和还原处理,得到所述石墨烯/碳纳米管/聚苯胺复合材料。与现有技术相比,本发明作为锂离子电池正极显示了优异的电化学性能,具有工艺简单,条件温和,成本低廉等优点。

    一种Zn-Co-S核壳材料的制备方法

    公开(公告)号:CN110415987B

    公开(公告)日:2021-07-20

    申请号:CN201910640944.8

    申请日:2019-07-16

    IPC分类号: H01G11/24 H01G11/30 H01G11/86

    摘要: 本发明涉及一种Zn‑Co‑S核壳材料的制备方法,包括步骤S1:将Co(NO3)2·6H2O,2‑甲基咪唑分别溶于甲醇中,之后将得到的两种溶液混合,静置,得到紫色沉淀,离心,并用甲醇洗涤,干燥,得到ZIF‑67沉淀;S2:将ZIF‑67沉淀分散于乙醇中,将得到溶液加入硫代乙酰胺的乙醇溶液中,并将得到的混合溶液放入高压釜中反应,将反应后产物洗涤、干燥,得到CoSx固体,将CoSx固体在无氧条件下煅烧,得到Co9S8;S3:将Co9S8加入水和甘油的混合液中,加入Co(NO3)2·6H2O、Zn(NO3)2·6H2O和硫代乙酰胺,恒温油浴反应,乙醇洗涤,干燥,得到Zn‑Co‑S核壳材料。与现有技术相比,本发明方法环境友好、制备方法简单,便于大规模生产。

    一种MnS@CoMn-LDH复合材料及其制备方法与应用

    公开(公告)号:CN110211812B

    公开(公告)日:2021-02-26

    申请号:CN201910517909.7

    申请日:2019-06-14

    摘要: 本发明涉及一种MnS@CoMn‑LDH复合材料及其制备方法与应用,复合材料的制备方法包括以下步骤:1)将可溶性锰盐溶于水中,之后加入硫化物,并进行一次水热反应,后经离心、洗涤、干燥,得到MnS;2)将可溶性锰盐、可溶性钴盐、氟化铵及尿素溶于水中,之后加入MnS,并进行二次水热反应,后经冷却、离心、洗涤、干燥,即得到MnS@CoMn‑LDH复合材料;将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明通过两步水热合成了MnS@CoMn‑LDH复合材料,该复合材料含有丰富的中孔和微孔,以达到良好的电化学性能,且复合材料制备方法简单,环境友好,大大缩短了合成时间,便于大规模生产高纯度的MnS@CoMn‑LDH复合材料。

    一种Co/Mn-MOF/氮掺杂碳基复合材料及其制备方法与应用

    公开(公告)号:CN111710529A

    公开(公告)日:2020-09-25

    申请号:CN202010431727.0

    申请日:2020-05-20

    摘要: 本发明涉及一种Co/Mn-MOF/氮掺杂碳基复合材料及其制备方法与应用,复合材料的制备方法包括以下步骤:1)制备氮掺杂多孔碳及双金属混合溶液;2)将氮掺杂多孔碳加入至双金属混合溶液中,之后进行水热反应,后经冷却、洗涤、干燥,即得到Co/Mn-MOF/氮掺杂碳基复合材料。将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明中,氮掺杂多孔碳的三维多孔结构与Co/Mn双金属有机骨架的协同作用,形成具有高比电容、高导电性以及更好的循环稳定性的超级电容器电极材料,制备过程环境友好,制备方法简单,为制备高性能超级电容器电极材料提供了一种有效途径。

    石墨烯/碳纳米管/聚苯胺复合材料的制备方法及应用

    公开(公告)号:CN111138661A

    公开(公告)日:2020-05-12

    申请号:CN202010060641.1

    申请日:2020-01-19

    摘要: 本发明涉及一种石墨烯/碳纳米管/聚苯胺复合材料的制备方法及应用,包括以下步骤:将氧化石墨烯进行草酸化改性获得改性氧化石墨烯;然后将改性氧化石墨烯分散于水中获得改性氧化石墨烯悬浮液,加入浓盐酸;加入苯胺单体,超声分散均匀,进行预反应获得苯胺修饰的石墨烯;向苯胺修饰的石墨烯中加入碳纳米管、活性MnO2和过硫酸铵,进行氧化聚合反应;将反应后的物料经过固液分离、洗涤、干燥得到HCl掺杂的复合材料;向HCl掺杂的复合材料中加入氨水和水合肼进行脱掺杂和还原处理,得到所述石墨烯/碳纳米管/聚苯胺复合材料。与现有技术相比,本发明作为锂离子电池正极显示了优异的电化学性能,具有工艺简单,条件温和,成本低廉等优点。

    Fe2-1.5xMoxS2-RGO杂化催化剂及其制备方法和应用

    公开(公告)号:CN107699919B

    公开(公告)日:2019-07-23

    申请号:CN201710962480.3

    申请日:2017-10-17

    IPC分类号: C25B11/06 C25B1/04

    CPC分类号: Y02E60/366

    摘要: 本发明涉及Fe2‑1.5xMoxS2‑RGO杂化催化剂及其制备方法和应用,该Fe2‑1.5xMoxS2‑RGO是通过在氧化石墨烯负载纳米粒子,然后水热反应,在高温高压下硫化,其中部分氧化石墨烯被还原,生成Fe2‑1.5xMoxS2‑RGO;其制备方法包括氧化石墨烯的制备以及Fe2‑1.5xMoxS2‑RGO的制备;本发明同现有技术相比,所得到的Fe2‑1.5xMoxS2‑RGO杂化催化剂比现有的电催化剂成本低,该杂化催化剂可用于电催化析氢,而且Mo元素的掺杂降低了电催化析氢时的过电位,改善了电催化析氢的效果,该催化剂稳定性良好,制备方法简单,增强了电催化析氢的性能,可以面向工业化发展。

    一种FeNi-S@N-RGO纳米片超级电容器电极材料及其制备方法

    公开(公告)号:CN109741962A

    公开(公告)日:2019-05-10

    申请号:CN201910021091.X

    申请日:2019-01-09

    摘要: 本发明公开了一种FeNi-S@N-RGO纳米片超级电容器电极材料及其制备方法。该制备方法包括以下几个步骤:第一步:将氯化镍六水合物、硝酸铁九水合物、尿素、柠檬酸三钠盐二水合物和去离子水混合后,水热釜中进行水热反应,反应结束后离心,洗涤,干燥;第二步:将第一步水热得到的样品FeNi LDH、硫代乙酰胺加入到乙醇溶液中,再进行水热反应,待反应结束进行离心,洗涤,干燥,得到FeNi-S样品;第三步:将FeNi-S样品和RGO混合后在管式炉中煅烧,制备出FeNi-S@N-RGO纳米片电极材料。本发明制备方法环境友好、制备方法简单,便于大规模生产。

    Fe2-1.5xMoxS2-RGO杂化催化剂及其制备方法和应用

    公开(公告)号:CN107699919A

    公开(公告)日:2018-02-16

    申请号:CN201710962480.3

    申请日:2017-10-17

    IPC分类号: C25B11/06 C25B1/04

    摘要: 本发明涉及Fe2-1.5xMoxS2-RGO杂化催化剂及其制备方法和应用,该Fe2-1.5xMoxS2-RGO是通过在氧化石墨烯负载纳米粒子,然后水热反应,在高温高压下硫化,其中部分氧化石墨烯被还原,生成Fe2-1.5xMoxS2-RGO;其制备方法包括氧化石墨烯的制备以及Fe2-1.5xMoxS2-RGO的制备;本发明同现有技术相比,所得到的Fe2-1.5xMoxS2-RGO杂化催化剂比现有的电催化剂成本低,该杂化催化剂可用于电催化析氢,而且Mo元素的掺杂降低了电催化析氢时的过电位,改善了电催化析氢的效果,该催化剂稳定性良好,制备方法简单,增强了电催化析氢的性能,可以面向工业化发展。

    一种碳掺杂双金属氧化物材料及其制备方法

    公开(公告)号:CN108711621B

    公开(公告)日:2021-05-11

    申请号:CN201810517045.4

    申请日:2018-05-25

    摘要: 本发明公开了一种碳掺杂双金属氧化物材料及其制备方法。本发明的制备方法包括以下步骤:(1)将六水合氯化铁、六水合氯化镍、氯化铵、明胶与去离子水加热混匀后烘干;(2)将步骤(1)的烘干后样品在惰性气氛下低温碳化,低温碳化后样品用浓度为0.8‑2mol/L的盐酸浸泡刻蚀,再抽滤烘干;(3)将烘干后样品在惰性气氛下高温碳化,高温碳化后样品用浓度为0.1‑0.5mol/L的盐酸浸泡刻蚀,再抽滤烘干,得到碳掺杂双金属氧化物材料。本发明原材料成本低,制备方法简单,得到的碳掺杂双金属氧化物材料具有高的比表面积和相对均匀的孔径分布,在有毒气体吸附和锂电池领域具有良好的应用前景。