-
公开(公告)号:CN109783906B
公开(公告)日:2023-07-07
申请号:CN201811633698.5
申请日:2018-12-29
申请人: 东北大学
IPC分类号: G06F30/27 , G06N3/0464 , G06N3/08 , G01N27/83 , F17D5/02
摘要: 本发明提出一种管道内检测漏磁数据智能分析系统及方法,流程包括:在数据完备集构建模块中采用一种基于类时域稀疏采样和KNN‑softmax的数据完备集构建方法,得到完备漏磁数据集;在发现模块中采用一种基于选择性搜索与卷积神经网络相结合的管道连接组件发现方法,得到焊缝的精确位置;在发现模型中采用一种基于拉格朗日数乘框架和多源漏磁数据融合的异常候选区域搜索与识别方法,找出有缺陷的漏磁信号;在量化模块中采用一种基于随机森林的缺陷量化方法,得到缺陷尺寸;在解决方案模块中采用一种基于ASME B31G标准改进的管道解决方案,输出评估结果。本发明从整体角度提出了分析方法,实现了预处理,连接组件检测和异常检测,缺陷尺寸反演以及最终维修决策。
-
公开(公告)号:CN109783906A
公开(公告)日:2019-05-21
申请号:CN201811633698.5
申请日:2018-12-29
申请人: 东北大学
摘要: 本发明提出一种管道内检测漏磁数据智能分析系统及方法,流程包括:在数据完备集构建模块中采用一种基于类时域稀疏采样和KNN-softmax的数据完备集构建方法,得到完备漏磁数据集;在发现模块中采用一种基于选择性搜索与卷积神经网络相结合的管道连接组件发现方法,得到焊缝的精确位置;在发现模型中采用一种基于拉格朗日数乘框架和多源漏磁数据融合的异常候选区域搜索与识别方法,找出有缺陷的漏磁信号;在量化模块中采用一种基于随机森林的缺陷量化方法,得到缺陷尺寸;在解决方案模块中采用一种基于ASME B31G标准改进的管道解决方案,输出评估结果。本发明从整体角度提出了分析方法,实现了预处理,连接组件检测和异常检测,缺陷尺寸反演以及最终维修决策。
-
公开(公告)号:CN109632942B
公开(公告)日:2022-08-26
申请号:CN201910130177.6
申请日:2019-02-21
申请人: 东北大学
摘要: 本发明提出一种基于集成学习的管道缺陷尺寸的反演方法,包括:对已知缺陷尺寸的缺陷三轴漏磁信号样本集进行数据插值预处理;进行多维度特征提取,在时域中提取信号特征集[F(t),F(δ)];在频域中,采用一种基于小波变换的方法构造小波能量特征集F(w);构建nsample个缺陷的多维度特征集F=[F(t),F(δ),F(w)];采用一种迭代的Stacking Leaning网络,自动确定最终网络结构;对待测缺陷漏磁信号的尺寸进行预测,得到管道缺陷尺寸的预测结果。本发明采用时频域多维度特征提取方法构造缺陷特征,全面分析漏磁信号所含信息,提高网络对复杂缺陷的尺寸预测能力;本发明鲁棒性强,短时间内实现缺陷的故障诊断,降低管道泄漏造成的社会危害;实现对不同故障诊断样本集的自适应性,使网络在工业领域具有普适性和可移植性。
-
公开(公告)号:CN109632942A
公开(公告)日:2019-04-16
申请号:CN201910130177.6
申请日:2019-02-21
申请人: 东北大学
摘要: 本发明提出一种基于SL的管道缺陷尺寸的反演方法,包括:对已知缺陷尺寸的缺陷三轴漏磁信号样本集进行数据插值预处理;进行多维度特征提取,在时域中提取信号特征集[F(t),F(δ)];在频域中,采用一种基于小波变换的方法构造小波能量特征集F(w);构建nsample个缺陷的多维度特征集F=[F(t),F(δ),F(w)];采用一种迭代的Stacking Leaning网络,自动确定最终网络结构;对待测缺陷漏磁信号的尺寸进行预测,得到管道缺陷尺寸的预测结果。本发明采用时频域多维度特征提取方法构造缺陷特征,全面分析漏磁信号所含信息,提高网络对复杂缺陷的尺寸预测能力;本发明鲁棒性强,短时间内实现缺陷的故障诊断,降低管道泄漏造成的社会危害;实现对不同故障诊断样本集的自适应性,使网络在工业领域具有普适性和可移植性。
-
-
-