一种基于卷积神经网络的颈动脉提取方法

    公开(公告)号:CN114519722A

    公开(公告)日:2022-05-20

    申请号:CN202210145347.X

    申请日:2022-02-17

    Applicant: 东北大学

    Abstract: 本发明公开了一种基于卷积神经网络的颈动脉提取方法,涉及医学图像处理技术领域。该方法包括:对原始数据集中各三维颈动脉CTA图像及各自对应的分割标签分别提取补丁块;构建训练数据集;建立并训练颈动脉中心路径预测模型;确定并训练颈动脉分割模型;输入待预测颈动脉的三维颈动脉CTA图像以及给定的种子点;基于种子点,提取以种子点为中心的补丁块;加载预训练的颈动脉中心路径预测模型和预训练的颈动脉分割模型,基于以种子点为中心的补丁块和预训练的颈动脉中心路径预测模型进行颈动脉中心路径的迭代追踪,并在颈动脉中心路径追踪过程中完成颈动脉的分割。该方法首次实现了追踪颈动脉中心路径的同时完成颈动脉分割。

    一种基于卷积神经网络的颈动脉提取方法

    公开(公告)号:CN114519722B

    公开(公告)日:2024-11-08

    申请号:CN202210145347.X

    申请日:2022-02-17

    Applicant: 东北大学

    Abstract: 本发明公开了一种基于卷积神经网络的颈动脉提取方法,涉及医学图像处理技术领域。该方法包括:对原始数据集中各三维颈动脉CTA图像及各自对应的分割标签分别提取补丁块;构建训练数据集;建立并训练颈动脉中心路径预测模型;确定并训练颈动脉分割模型;输入待预测颈动脉的三维颈动脉CTA图像以及给定的种子点;基于种子点,提取以种子点为中心的补丁块;加载预训练的颈动脉中心路径预测模型和预训练的颈动脉分割模型,基于以种子点为中心的补丁块和预训练的颈动脉中心路径预测模型进行颈动脉中心路径的迭代追踪,并在颈动脉中心路径追踪过程中完成颈动脉的分割。该方法首次实现了追踪颈动脉中心路径的同时完成颈动脉分割。

Patent Agency Ranking