-
公开(公告)号:CN105469080B
公开(公告)日:2018-09-25
申请号:CN201610008142.1
申请日:2016-01-07
申请人: 东华大学
IPC分类号: G06K9/00
摘要: 本发明涉及一种人脸表情识别方法,包括以下步骤:对人脸图片进行预处理;对预处理完的人脸图片做基于uniform LGBP的特征提取,并建立图片特征的显著性;使用遗传算法对图片特征进行第一次特征选取,得到优秀的种群;根据得到的优秀的种群作为每类表情特征的优秀种群的比较值,来建立类内和类间的两个新的目标函数,目标就是最小化类内函数的值和最大化类间函数的值,并使用Pareto优化算法来对其进行优化;进行脸部特征的分类,在选取完最优特征以后,采取随机森林的方法来对特征进行分类。本发明能够提高在人脸表情识别的精度和速度。
-
公开(公告)号:CN105139072A
公开(公告)日:2015-12-09
申请号:CN201510570592.5
申请日:2015-09-09
申请人: 东华大学
IPC分类号: G06N3/08
摘要: 本发明公开了一种强化学习算法,其包括新Q学习算法,新Q学习算法包括以下实现步骤:将采集好的数据输入到BP神经网络中,计算状态隐含层和输出层各个单元的输入和输出;在t状态就算出其最大输出值m,基于这个输出判断是否与障碍物发生碰撞,如果发生了碰撞则记录下BP神经网络的各单元阈值和各连接权值;否则计算T+1时刻采集数据并归一化,计算t+1状态隐含层和输出层各个单元的输入和输出,计算t状态期望输出值,调整输出和隐含层各个单元的阈值,判断误差是否小于给定阈值或学习次数大于给定值,如果不符合条件则重新学习,不然记录下各个单元的阈值和各个连接权值,结束学习。本发明实时性好、快速性好、可后期重学习。
-
公开(公告)号:CN105469080A
公开(公告)日:2016-04-06
申请号:CN201610008142.1
申请日:2016-01-07
申请人: 东华大学
IPC分类号: G06K9/00
CPC分类号: G06K9/00288
摘要: 本发明涉及一种人脸表情识别方法,包括以下步骤:对人脸图片进行预处理;对预处理完的人脸图片做基于uniform LGBP的特征提取,并建立图片特征的显著性;使用遗传算法对图片特征进行第一次特征选取,得到优秀的种群;根据得到的优秀的种群作为每类表情特征的优秀种群的比较值,来建立类内和类间的两个新的目标函数,目标就是最小化类内函数的值和最大化类间函数的值,并使用Pareto优化算法来对其进行优化;进行脸部特征的分类,在选取完最优特征以后,采取随机森林的方法来对特征进行分类。本发明能够提高在人脸表情识别的精度和速度。
-
-