-
公开(公告)号:CN117787688A
公开(公告)日:2024-03-29
申请号:CN202311650449.8
申请日:2023-12-04
Applicant: 东南大学
IPC: G06Q10/0635 , G06Q10/04 , G06Q10/0639 , G06Q50/26 , G06Q50/40
Abstract: 本发明公开一种国省干线道路交通事故风险预测方法,属于计算、推算或计数的技术领域。该方法,首先,本发明在对数据进行预处理和时空划分的基础上,从人员、车辆、道路、环境四个角度提取交通事故风险特征;接着,构建经济指标划分交通事故类型,通过交通事故数量、事故发生率、事故危害性构建干线道路交通风险指标;然后,基于贝叶斯网络模型,通过结构学习算法初步获得交通风险预测模型结构,结合既有知识进行模型结构优化;最后,通过真实数据训练模型并对模型进行评价。该发明以交通管理部门易获取的数据作为数据源,应用可解释性强的贝叶斯网络模型,无需大量训练数据,实现了在检测设备不健全条件下的国省干线道路交通风险预测。
-
公开(公告)号:CN117592695A
公开(公告)日:2024-02-23
申请号:CN202311486201.2
申请日:2023-11-09
Applicant: 东南大学
IPC: G06Q10/0631 , G06Q10/047 , G06Q50/06 , G06Q50/26 , G06F30/27 , G06F119/02
Abstract: 本发明公开了一种基于增强型BP神经网络的机场加油车低碳调度方法,包括:获取机场网络拓扑信息和车辆运行状态数据,建立机场加油车低碳优化调度模型;提出基于增强型BP神经网络,将模型的多变量参数优化问题转化三个单变量子优化问题,初始化三个单变量,依次更新三个单变量,将更新的三个单变量作为增强型BP神经网络的输入,迭代优化直至满足收敛条件,获得权重向量;利用Lyapunov稳定性理论与数学推导,证明提出的增强型BP神经网络方法的稳定性和收敛性;本发明提出基于增强型BP神经网络的加油车路径调度模型,引入学习率的下界函数,避免了自适应梯度下降算法的过早收敛,提高了路径调度的预测精度。
-