一种基于保局映射与主成分分析的图像分类方法

    公开(公告)号:CN104881682A

    公开(公告)日:2015-09-02

    申请号:CN201510274498.5

    申请日:2015-05-26

    Applicant: 东南大学

    CPC classification number: G06K9/6269

    Abstract: 本发明公开了一种基于保局映射与主成分分析的图像分类方法,包括以下步骤:1、输入训练对象;2、建立一层或两层的流形学习网络,对于每一种具体的网络,学习得到每一层的滤波器;3、建立流形学习网络的输出层得到最终特征向量;4、将步骤3中最终得到的所有的特征向量输入支持向量机分类器进行训练;5、用校验图像集进行校验,调整到最佳网络参数;6、对测试图像进行测试,统计分类结果,计算识别率。本发明通过构造三种结构相似但不同网络层的网络,应用一种流形方法即保局映射获得图像更加本质的局部结构,使得在各种分类任务中,构造的网络更加具有分辨力,获得更高的图像的分类准确率。

    一种基于保局映射与主成分分析的图像分类方法

    公开(公告)号:CN104881682B

    公开(公告)日:2019-03-05

    申请号:CN201510274498.5

    申请日:2015-05-26

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于保局映射与主成分分析的图像分类方法,包括以下步骤:1、输入训练对象;2、建立一层或两层的流形学习网络,对于每一种具体的网络,学习得到每一层的滤波器;3、建立流形学习网络的输出层得到最终特征向量;4、将步骤3中最终得到的所有的特征向量输入支持向量机分类器进行训练;5、用校验图像集进行校验,调整到最佳网络参数;6、对测试图像进行测试,统计分类结果,计算识别率。本发明通过构造三种结构相似但不同网络层的网络,应用一种流形方法即保局映射获得图像更加本质的的局部结构,使得在各种分类任务中,构造的网络更加具有分辨力,获得更高的图像的分类准确率。

    一种基于核主成分分析网络的图像分类方法

    公开(公告)号:CN104573729A

    公开(公告)日:2015-04-29

    申请号:CN201510037296.9

    申请日:2015-01-23

    Applicant: 东南大学

    Abstract: 本发明公开一种基于核主成分分析网络的图像分类方法,包括以下步骤:(1)输入并预处理训练图像,得到训练图像的局部特征矩阵,(2)建立一个两层的核主成分分析网络,获得训练图像的主特征向量,(3)并用获得的主特征向量训练分类器;为了验证分类的正确性,建立测试核主成分分析网络对测试图像进行测试。本发明通过构造一个两层的核主成分分析网络,能够获得图像的非线性特征,使得图像特征的描述更精确,分类也更为准确,对于图像分类问题有着更高的正确率。

    一种基于核主成分分析网络的图像分类方法

    公开(公告)号:CN104573729B

    公开(公告)日:2017-10-31

    申请号:CN201510037296.9

    申请日:2015-01-23

    Applicant: 东南大学

    Abstract: 本发明公开一种基于核主成分分析网络的图像分类方法,包括以下步骤:(1)输入并预处理训练图像,得到训练图像的局部特征矩阵,(2)建立一个两层的核主成分分析网络,获得训练图像的主特征向量,(3)并用获得的主特征向量训练分类器;为了验证分类的正确性,建立测试核主成分分析网络对测试图像进行测试。本发明通过构造一个两层的核主成分分析网络,能够获得图像的非线性特征,使得图像特征的描述更精确,分类也更为准确,对于图像分类问题有着更高的正确率。

    一种基于压缩型卷积神经网络的图像去噪方法

    公开(公告)号:CN107248144B

    公开(公告)日:2019-12-10

    申请号:CN201710286383.7

    申请日:2017-04-27

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于压缩型卷积神经网络的图像去噪方法,包括:构造训练数据集;构造压缩型去噪卷积神经网络模型;利用训练数据集对网络模型进行训练;将有噪声的图像输入到训练好的网络中,并用所述有噪声的图像减去网络的输出图像得到清晰的去噪图像。本发明中的去噪卷积神经网络主要特征在于将原始的去噪卷积神经网络的卷积层替换成了经由低秩矩阵分解压缩后的卷积层。本发明通过改进一种已有的去噪卷积神经网络DnCNN,将其网络参数减少了至少75%,精简了网络,同时保持了优异的去噪效果。

    一种基于压缩型卷积神经网络的图像去噪方法

    公开(公告)号:CN107248144A

    公开(公告)日:2017-10-13

    申请号:CN201710286383.7

    申请日:2017-04-27

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于压缩型卷积神经网络的图像去噪方法,包括:构造训练数据集;构造压缩型去噪卷积神经网络模型;利用训练数据集对网络模型进行训练;将有噪声的图像输入到训练好的网络中,并用所述有噪声的图像减去网络的输出图像得到清晰的去噪图像。本发明中的去噪卷积神经网络主要特征在于将原始的去噪卷积神经网络的卷积层替换成了经由低秩矩阵分解压缩后的卷积层。本发明通过改进一种已有的去噪卷积神经网络DnCNN,将其网络参数减少了至少75%,精简了网络,同时保持了优异的去噪效果。

Patent Agency Ranking