面向深度神经网络加速器应用的近似计算系统

    公开(公告)号:CN108921292A

    公开(公告)日:2018-11-30

    申请号:CN201810409591.6

    申请日:2018-05-02

    Abstract: 本发明公开一种面向深度神经网络加速器应用的近似计算系统,包括:片上分布式静态随机存取存储器:存放压缩后的权重;控制单元和霍夫曼解码器:对配置单元中的编码进行解码操作,控制单元将数据分配到处理单元阵列。首“1”探测电路:探测输入数据的首“1”位置;处理单元阵列:实现权重和输入数据的乘加操作。此种技术方案可解决加速器中运算速度慢、运算量复杂、无法实现高性能高运算速率的问题,达到了深度神经网络加速器的高性能、高能效以及高运算速率的设计优点。

    面向深度神经网络加速器应用的近似计算系统

    公开(公告)号:CN108921292B

    公开(公告)日:2021-11-30

    申请号:CN201810409591.6

    申请日:2018-05-02

    Abstract: 本发明公开一种面向深度神经网络加速器应用的近似计算系统,包括:片上分布式静态随机存取存储器:存放压缩后的权重;控制单元和霍夫曼解码器:对配置单元中的编码进行解码操作,控制单元将数据分配到处理单元阵列。首“1”探测电路:探测输入数据的首“1”位置;处理单元阵列:实现权重和输入数据的乘加操作。此种技术方案可解决加速器中运算速度慢、运算量复杂、无法实现高性能高运算速率的问题,达到了深度神经网络加速器的高性能、高能效以及高运算速率的设计优点。

    基于动态精度可配运算的近似计算可重构阵列

    公开(公告)号:CN107783935B

    公开(公告)日:2021-03-19

    申请号:CN201710882550.4

    申请日:2017-09-26

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于动态精度可配运算的近似计算可重构阵列,基于传统的可重构阵列,增加一个动态精度控制模块,用于实现如下操作:根据输入的配置信息,动态配置重构阵列里计算单元的迭代次数,以满足一定的精度需求;其硬件结构包括迭代控制器和配置控制器;迭代控制器用于调整乘法器的计算精度,通过动态配置迭代次数,可以满足不同计算精度的要求。配置控制器用于重新动态配置计算阵列模块。本发明设计简单,可行性好,通过动态调节迭代次数,从而实现了动态精度可配,减小计算复杂度和计算时间,并且降低了功耗,同时保证了一定的精度。

    一种适用于神经网络的乘加计算方法和计算电路

    公开(公告)号:CN109344964A

    公开(公告)日:2019-02-15

    申请号:CN201810894109.2

    申请日:2018-08-08

    Applicant: 东南大学

    Abstract: 本发明提出一种适用于神经网络的乘加计算方法和计算电路,涉及模拟集成电路技术领域,实现了低功耗、高速度完成神经网络大规模乘加计算。乘加计算电路包括乘法计算电路阵列和累加计算电路。乘法计算电路阵列由M组乘法计算电路组成,每组乘法计算电路由一个乘法阵列单元和八个选择移位单元组成,采用片上训练实时量化乘法阵列单元阶数,为选择移位单元提供共享输入,实现运算速率的提高及功耗的降低;累加计算电路由延时累加电路、TDC转换电路和相加移位电路串联构成。延时累加电路包含8条可控延时链,动态控制迭代次数,在时间域内对数据多次累加,满足不同网络层计算规模的差异性,节省硬件存储空间、降低计算复杂度、减小数据调度。

    基于动态精度可配运算的近似计算可重构阵列

    公开(公告)号:CN107783935A

    公开(公告)日:2018-03-09

    申请号:CN201710882550.4

    申请日:2017-09-26

    Applicant: 东南大学

    CPC classification number: G06F15/7871

    Abstract: 本发明公开了一种基于动态精度可配运算的近似计算可重构阵列,基于传统的可重构阵列,增加一个动态精度控制模块,用于实现如下操作:根据输入的配置信息,动态配置重构阵列里计算单元的迭代次数,以满足一定的精度需求;其硬件结构包括迭代控制器和配置控制器;迭代控制器用于调整乘法器的计算精度,通过动态配置迭代次数,可以满足不同计算精度的要求。配置控制器用于重新动态配置计算阵列模块。本发明设计简单,可行性好,通过动态调节迭代次数,从而实现了动态精度可配,减小计算复杂度和计算时间,并且降低了功耗,同时保证了一定的精度。

    一种适用于神经网络的乘加计算方法和计算电路

    公开(公告)号:CN109344964B

    公开(公告)日:2020-12-29

    申请号:CN201810894109.2

    申请日:2018-08-08

    Applicant: 东南大学

    Abstract: 本发明提出一种适用于神经网络的乘加计算方法和计算电路,涉及模拟集成电路技术领域,实现了低功耗、高速度完成神经网络大规模乘加计算。乘加计算电路包括乘法计算电路阵列和累加计算电路。乘法计算电路阵列由M组乘法计算电路组成,每组乘法计算电路由一个乘法阵列单元和八个选择移位单元组成,采用片上训练实时量化乘法阵列单元阶数,为选择移位单元提供共享输入,实现运算速率的提高及功耗的降低;累加计算电路由延时累加电路、TDC转换电路和相加移位电路串联构成。延时累加电路包含8条可控延时链,动态控制迭代次数,在时间域内对数据多次累加,满足不同网络层计算规模的差异性,节省硬件存储空间、降低计算复杂度、减小数据调度。

Patent Agency Ranking