一种基于卷积神经网络的时频差提取方法

    公开(公告)号:CN118245772B

    公开(公告)日:2024-09-17

    申请号:CN202410114890.2

    申请日:2024-01-26

    摘要: 本发明属于电磁信号处理技术领域,特别涉及一种无源定位中时频差提取方法。一种基于卷积神经网络的时频差提取方法,包括以下步骤:接收机截获离散复信号;将离散复信号转化为时频图;用已经训练好的卷积神经网络,分别对时差和频差进行估计,得到粗估计结果;根据粗估计结果和训练网络时得出的统计误差划定一个用以细估的时频差搜索范围;使用网格搜索法在划定的范围内用互模糊函数对粗估计结果进行细估,得到最终的细估计结果;细估计结果作为训练样本反馈至所述卷积神经网络,更新粗估计误差统计特征。本方法很好的平衡了时频差提取方法的计算量和估计精度,与传统方法相比,在计算量远小于传统方法的情况下,获得了几乎最好的估计结果。

    一种基于卷积神经网络的时频差提取方法

    公开(公告)号:CN118245772A

    公开(公告)日:2024-06-25

    申请号:CN202410114890.2

    申请日:2024-01-26

    摘要: 本发明属于电磁信号处理技术领域,特别涉及一种无源定位中时频差提取方法。一种基于卷积神经网络的时频差提取方法,包括以下步骤:接收机截获离散复信号;将离散复信号转化为时频图;用已经训练好的卷积神经网络,分别对时差和频差进行估计,得到粗估计结果;根据粗估计结果和训练网络时得出的统计误差划定一个用以细估的时频差搜索范围;使用网格搜索法在划定的范围内用互模糊函数对粗估计结果进行细估,得到最终的细估计结果;细估计结果作为训练样本反馈至所述卷积神经网络,更新粗估计误差统计特征。本方法很好的平衡了时频差提取方法的计算量和估计精度,与传统方法相比,在计算量远小于传统方法的情况下,获得了几乎最好的估计结果。