-
公开(公告)号:CN115099388A
公开(公告)日:2022-09-23
申请号:CN202210597277.1
申请日:2022-05-30
申请人: 中国人民解放军战略支援部队信息工程大学
摘要: 本发明属于人工智能技术领域,特别涉及一种网络对抗训练样本生成方法及图神经网络鲁棒性评估方法,利用诱导数据对图神经网络进行对抗训练,将攻击损失建立在未扰动的训练集上,在鲁棒性评估中考虑模型参数的对抗训练过程,从过拟合角度出发,构造加扰的训练数据,使图神经网络能够对训练数据很好地拟合,却难以对测试数据正确分类,也即图神经网络过拟合训练集学习出一个“假模型”。本发明采用对抗性攻击准确率下降幅度作为图神经网络鲁棒性评估方案,使图神经网络鲁棒性评估更加全面、完整、细致,评估后的图神经网络更加有效、可靠,便于图卷积神经网络在自然语言处理、计算机视觉及网络分析预测等领域中实际应用。