网络对抗训练样本生成方法及图神经网络鲁棒性评估方法

    公开(公告)号:CN115099388A

    公开(公告)日:2022-09-23

    申请号:CN202210597277.1

    申请日:2022-05-30

    IPC分类号: G06N3/04 G06N3/08 G06K9/62

    摘要: 本发明属于人工智能技术领域,特别涉及一种网络对抗训练样本生成方法及图神经网络鲁棒性评估方法,利用诱导数据对图神经网络进行对抗训练,将攻击损失建立在未扰动的训练集上,在鲁棒性评估中考虑模型参数的对抗训练过程,从过拟合角度出发,构造加扰的训练数据,使图神经网络能够对训练数据很好地拟合,却难以对测试数据正确分类,也即图神经网络过拟合训练集学习出一个“假模型”。本发明采用对抗性攻击准确率下降幅度作为图神经网络鲁棒性评估方案,使图神经网络鲁棒性评估更加全面、完整、细致,评估后的图神经网络更加有效、可靠,便于图卷积神经网络在自然语言处理、计算机视觉及网络分析预测等领域中实际应用。

    融合标题信息的伪造人物视频检测方法及装置

    公开(公告)号:CN114911971A

    公开(公告)日:2022-08-16

    申请号:CN202210288932.5

    申请日:2022-03-23

    摘要: 本发明属于视频处理、网络信息安全技术领域,具体涉及一种融合标题信息的伪造人物视频检测方法及装置,该方法包括首先创建人物名字词典,基于文本规则匹配从带标题的含人脸的待检测视频的标题中提取人物的姓名信息;然后将从视频标题中提取的人物姓名作为关键词输入到互联网中进行搜索,进入相应人物的词条,提取人物的图像,将人脸区域保存为参考人脸图像;其次逐帧提取待检测视频中的视频帧,将人脸区域保存为待检测人脸图像;将待检测人脸图像和参考人脸图像输入到事先训练好的检测模型M中,如果M输出为1,则标记当前视频帧为伪造。本发明基于标题信息从互联网上获取目标对象的真实人脸图像作为先验知识,对伪造视频的真伪进行精准检测。