一种双流特征学习生成对抗网络的低分辨率船舶分类方法

    公开(公告)号:CN112651329A

    公开(公告)日:2021-04-13

    申请号:CN202011536094.6

    申请日:2020-12-23

    摘要: 本发明公开了一种双流特征学习生成对抗网络的低分辨率船舶分类方法,包括步骤:一、建立船舶图像训练集;二、构建并训练集高频和低频图像分解器为一体的双流通道图像分解器;三、优化基于特征学习的生成对抗网络;四、训练船舶分类器;五、低分辨率船舶图像的高低频分量分解、增强、拼接及分类。本发明针对低分辨率船舶图像信息匮乏的问题,提出了双流特征学习生成对抗网络的船舶图像分类方法,解决了船舶图像在降采样过程中高频分量和低频分量损失不一致的问题,通过高分辨率图像引导,构建双流通道图像分解器,生成增强的图像特征,通过图像拼接,保留几乎所有的输入图像内容,完成低分辨率船舶分类任务,分类效果好。