-
公开(公告)号:CN109685119B
公开(公告)日:2023-05-23
申请号:CN201811500515.2
申请日:2018-12-07
申请人: 中国人民解放军陆军工程大学
IPC分类号: G06V10/764 , G06N3/0464
摘要: 本发明公开一种针对含有噪声图像分类的新型深度卷积神经网络方法,主要特点在于采用了随机最大值池化这一新的池化方法。随机最大值池化方法随机选取感受野范围内前n个较大值作为池化结果,首先将感受野范围内的所有值进行排序,选出前n个较大值;然后在前n个较大值中随机选取一个值作为池化结果。随机最大值池化方法结合了最大池化方法和随机池化方法的特点,既能保留感受野内主要特征信息,又能提高网络对感受野内噪声的抑制作用。本发明在CIFAR‑10,SVHN和MNIST数据集上进行验证,取得较好效果。
-
公开(公告)号:CN109685119A
公开(公告)日:2019-04-26
申请号:CN201811500515.2
申请日:2018-12-07
申请人: 中国人民解放军陆军工程大学
CPC分类号: G06K9/6268 , G06N3/0454
摘要: 本发明公开一种针对含有噪声图像分类的新型深度卷积神经网络方法,主要特点在于采用了随机最大值池化这一新的池化方法。随机最大值池化方法随机选取感受野范围内前n个较大值作为池化结果,首先将感受野范围内的所有值进行排序,选出前n个较大值;然后在前n个较大值中随机选取一个值作为池化结果。随机最大值池化方法结合了最大池化方法和随机池化方法的特点,既能保留感受野内主要特征信息,又能提高网络对感受野内噪声的抑制作用。本发明在CIFAR-10,SVHN和MNIST数据集上进行验证,取得较好效果。
-
公开(公告)号:CN109670392A
公开(公告)日:2019-04-23
申请号:CN201811047838.0
申请日:2018-09-04
申请人: 中国人民解放军陆军工程大学
摘要: 本发明公开一种基于混合自动编码器的道路图像语义分割方法,包括如下步骤:(10)样本集收集:将样本集图像分为训练集与测试集;(20)样本图像预处理:对样本集图像进行尺寸变换、对比度归一化处理,将待处理的样本集图像转换成标准形式;(30)混合自动编码器网络模型获取:利用预处理后的训练样本,分别训练稀疏自动编码器和去噪自动编码器,提取中间的编码权值和解码权值,通过建立一种合理的模型排列顺序与堆叠形式构建出混合自动编码器网络模型;(40)道路语义分割:利用混合自动编码器网络模型,对车载摄像头拍摄的道路图像进行语义分割。本发明通过一种混合自动编码器的堆叠形式,实现对图像语义的优化描述,建立一个简洁有效的语义分割模型,获得更好的道路语义分割性能。
-
-