-
公开(公告)号:CN114574765A
公开(公告)日:2022-06-03
申请号:CN202210210872.5
申请日:2022-03-04
Applicant: 中国原子能科学研究院 , 中国科学院金属研究所
Abstract: 本发明属于高温用紧固件领域,具体涉及一种高温铅基堆用耐液态铅(铅铋)腐蚀的高性能紧固件及其制备方法。按重量百分比计,该紧固件材料的化学成分如下:C:0.06~0.12%;Si:2.0~3.0%;Mn:0~1.0%;S:0~0.005%;P:0~0.01%;Cr:13.0~17.0%;Ni:8.0~15.0%;Cu:0~1.0%;Mo:0.5~2.0%;Nb:8×100C~1.0%;O:0~0.003%;N:0~0.03%;Fe余量。本发明获得了同时具有优异耐铅铋腐蚀性能、高的强度、高的持久抗力、高的疲劳性能和优异抗应力松弛等综合性能集于一身的高性能紧固件,该紧固件可用于核能领域面临高温铅(铅铋)腐蚀环境的结构材料连接。
-
公开(公告)号:CN114645113B
公开(公告)日:2024-06-28
申请号:CN202210209662.4
申请日:2022-03-04
Applicant: 中国科学院金属研究所 , 中国原子能科学研究院
IPC: C21D1/00 , C21D1/26 , C21D6/00 , C21D8/02 , C21D8/06 , C22C38/02 , C22C38/04 , C22C38/34 , C22C38/42 , C22C38/44 , C22C38/48 , C22C38/58
Abstract: 本发明属于不锈钢加工工艺领域,具体涉及一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺。该工艺包括如下步骤:(1)均质化处理:将冶炼浇铸的高Nb奥氏体不锈钢铸锭放入高温炉均质化处理;(2)铸锭热加工:将均质化后的铸锭进行热锻或者热轧成锻棒或板材;(3)固溶热处理:将热锻或热轧的锻棒或板材进行固溶处理;(4)冷变形:将热处理后的锻棒或板材进行冷拉拔或冷轧;(5)退火热处理:冷拉拔或冷轧后的锻棒或板材在800~900℃保温2~4小时,空冷。本发明可以消除高Nb奥氏体不锈钢在凝固后期形成的一次粗大NbC,获得数量密度高、尺寸细小、弥散分布的NbC,可对高Nb奥氏体不锈钢的综合性能产生积极影响。
-
公开(公告)号:CN114574778A
公开(公告)日:2022-06-03
申请号:CN202210210884.8
申请日:2022-03-04
Applicant: 中国原子能科学研究院 , 中国科学院金属研究所
Abstract: 本发明属于金属腐蚀防护领域,具体为一种提高铅基堆用高性能紧固件耐液态铅铋腐蚀性能的合金化方法。按重量百分比计,C:0.03~0.15%;Si:1.0~4.0%;Mn:0~2.0%;S:0~0.005%;P:0~0.01%;Cr:12.0~18.0%;Ni:7.0~15.0%;Cu:0~2.0%;Nb:8×100C~1.0%;O:0~0.003%;N:0~0.03%;Fe余量。在上述化学成分基础上加入抗氧化能力强的Si、Mo、W、Nb中的一种或几种元素,在材料表面形成氧化物屏障,阻碍液态铅铋的进入。本发明可以突破现有紧固件用奥氏体不锈钢材料不具备耐液态铅铋腐蚀性能的技术壁垒,实现并提高铅基堆用紧固件的耐液态铅铋腐蚀性能。
-
公开(公告)号:CN114657465B
公开(公告)日:2023-10-13
申请号:CN202210209659.2
申请日:2022-03-04
Applicant: 中国科学院金属研究所 , 中国原子能科学研究院
Abstract: 本发明属于钢铁冶金领域,具体涉及一种提高紧固件用奥氏体不锈钢材料抗应力松弛性能的合金化方法。按重量百分比计,C:0.05~0.12%;Si:1.0~4.0%;Mn:0~2.0%;S:0~0.005%;P:0~0.01%;Cr:12.0~18.0%;Ni:7.0~15.0%;Nb:8×100C~1.0%;O:0~0.003%;N:0~0.03%;Fe余量。在上述化学成分的基础上加入适量的强固溶强化的Si、Mo、W中的一种或几种元素,或加入适量C、Nb和Cu中的一种或几种元素,并通过形变强化和随后的热处理组织调控技术,形成固溶强化和析出强化共同阻碍位错运动的障碍,从而提高紧固件材料在高温长时服役下的抗应力松弛性能。
-
公开(公告)号:CN114657465A
公开(公告)日:2022-06-24
申请号:CN202210209659.2
申请日:2022-03-04
Applicant: 中国科学院金属研究所 , 中国原子能科学研究院
Abstract: 本发明属于钢铁冶金领域,具体涉及一种提高紧固件用奥氏体不锈钢材料抗应力松弛性能的合金化方法。按重量百分比计,C:0.05~0.12%;Si:1.0~4.0%;Mn:0~2.0%;S:0~0.005%;P:0~0.01%;Cr:12.0~18.0%;Ni:7.0~15.0%;Nb:8×100C~1.0%;O:0~0.003%;N:0~0.03%;Fe余量。在上述化学成分的基础上加入适量的强固溶强化的Si、Mo、W中的一种或几种元素,或加入适量C、Nb和Cu中的一种或几种元素,并通过形变强化和随后的热处理组织调控技术,形成固溶强化和析出强化共同阻碍位错运动的障碍,从而提高紧固件材料在高温长时服役下的抗应力松弛性能。
-
公开(公告)号:CN114645113A
公开(公告)日:2022-06-21
申请号:CN202210209662.4
申请日:2022-03-04
Applicant: 中国科学院金属研究所 , 中国原子能科学研究院
IPC: C21D1/00 , C21D1/26 , C21D6/00 , C21D8/02 , C21D8/06 , C22C38/02 , C22C38/04 , C22C38/34 , C22C38/42 , C22C38/44 , C22C38/48 , C22C38/58
Abstract: 本发明属于不锈钢加工工艺领域,具体涉及一种调控高Nb奥氏体不锈钢中碳化物形态的冷变形工艺。该工艺包括如下步骤:(1)均质化处理:将冶炼浇铸的高Nb奥氏体不锈钢铸锭放入高温炉均质化处理;(2)铸锭热加工:将均质化后的铸锭进行热锻或者热轧成锻棒或板材;(3)固溶热处理:将热锻或热轧的锻棒或板材进行固溶处理;(4)冷变形:将热处理后的锻棒或板材进行冷拉拔或冷轧;(5)退火热处理:冷拉拔或冷轧后的锻棒或板材在800~900℃保温2~4小时,空冷。本发明可以消除高Nb奥氏体不锈钢在凝固后期形成的一次粗大NbC,获得数量密度高、尺寸细小、弥散分布的NbC,可对高Nb奥氏体不锈钢的综合性能产生积极影响。
-
公开(公告)号:CN114574765B
公开(公告)日:2023-07-14
申请号:CN202210210872.5
申请日:2022-03-04
Applicant: 中国原子能科学研究院 , 中国科学院金属研究所
Abstract: 本发明属于高温用紧固件领域,具体涉及一种高温铅基堆用耐液态铅(铅铋)腐蚀的高性能紧固件及其制备方法。按重量百分比计,该紧固件材料的化学成分如下:C:0.06~0.12%;Si:2.0~3.0%;Mn:0~1.0%;S:0~0.005%;P:0~0.01%;Cr:13.0~17.0%;Ni:8.0~15.0%;Cu:0~1.0%;Mo:0.5~2.0%;Nb:8×100C~1.0%;O:0~0.003%;N:0~0.03%;Fe余量。本发明获得了同时具有优异耐铅铋腐蚀性能、高的强度、高的持久抗力、高的疲劳性能和优异抗应力松弛等综合性能集于一身的高性能紧固件,该紧固件可用于核能领域面临高温铅(铅铋)腐蚀环境的结构材料连接。
-
公开(公告)号:CN113846275B
公开(公告)日:2023-06-13
申请号:CN202010597372.2
申请日:2020-06-28
Applicant: 中国科学院金属研究所
Abstract: 本发明涉及一种抗菌超高强度高韧性不锈钢材料及其制备方法。该不锈钢的重量百分比成分为:C:<0.03%,Cr:13.0~14.0%,Ni:6.0~8.0%,Co:6.0~8.0%,Mo:2.5~3.5%,Cu:0.5~2.0%,P:<0.01%,S:<0.01%,Mn:<0.1%,Fe:余量。本发明通过添加较高含量的Co和Cr以平衡材料的耐蚀性能;通过控制Cr当量,获得马氏体组织,保证δ铁素体含量低于2%;同时添加一定含量的强化元素Mo和Cu以及优化材料制备工艺,进而获得含纳米级的富钼相和富铜相,最终获得强度级别在1400MPa以上,冲击功大于50J,同时具有强抗菌性能和耐蚀性的材料,可应用到各个领域。
-
公开(公告)号:CN116219132A
公开(公告)日:2023-06-06
申请号:CN202211601952.X
申请日:2022-12-13
Applicant: 中国科学院金属研究所
IPC: C21D8/02 , C21D6/00 , C21D11/00 , C22C38/34 , C22C38/58 , C22C38/42 , C22C38/44 , C22C38/60 , C22C38/50 , C22C38/48 , C22C38/46 , C22C38/06
Abstract: 本发明涉及一种提高铁路辙叉用高强韧钢力学性能的热处理方法,属于钢铁材料热处理领域。按重量百分比计,该钢的化学成分范围为:C:0.23~0.28%,Si:1.74~1.78%,Mn:1.69~1.85%,Cr:1.26~1.35%,Ni:0.45~0.65%,Cu:0.06~0.09%,Mo:0.37~0.41%,Sn:<0.0073%,Sb:<0.0063%,Ti:<0.009%,N:≤0.05%,Nb:≤0.002%,V:≤0.015%,Al:≤0.015%,P:≤0.013%,S:<0.005%,As:<0.007%,余量为铁。本发明热处理工艺流程简单,易于实现工业生产。经过本发明所述方法处理后得到的铁路辙叉用钢力学性能能达到屈服强度>1200MPa,抗拉强度>1300MPa,延伸率≥14%,断面收缩率>45%,V口室温冲击功≥80J,V口低温(‑40℃)冲击功>35J。
-
公开(公告)号:CN115656294A
公开(公告)日:2023-01-31
申请号:CN202211408805.0
申请日:2022-11-11
Applicant: 中国科学院金属研究所 , 中国核电工程有限公司
IPC: G01N27/403 , G01N17/02
Abstract: 一种模拟乏燃料后处理沸腾硝酸原位多次异处划伤电极系统,属于乏燃料后处理腐蚀模拟实验和划伤电极系统领域,包括沸腾硝酸电解池、工作电极夹持装置、电解池顶盖、沸腾硝酸工作电极、沸腾硝酸参比电极、沸腾硝酸对电极、特殊气缸、划伤运动轴、划头装置、温度控制系统、电化学测试系统和尾气处理系统。相比现有划伤电极技术,本发明能模拟乏燃料后处理沸腾硝酸环境中金属试样表面的划伤‑再钝化行为,可精确控制划伤的速度和压力,并能自主控制在异处进行划伤同时进行原位电化学监测,安装一次试样可进行多次划伤实验。
-
-
-
-
-
-
-
-
-