-
公开(公告)号:CN114492211B
公开(公告)日:2022-07-12
申请号:CN202210392225.0
申请日:2022-04-15
申请人: 中国石油大学(华东)
IPC分类号: G06F30/27 , G06N3/04 , G06N3/08 , G06Q50/02 , G06F111/10 , G06F113/08
摘要: 本发明公开了一种基于自回归网络模型的剩余油分布预测方法,属于油藏开发技术领域,包括以下步骤:从流体流动的基本渗流微分方程入手,分析剩余油分布的主要影响因素;使用数值模拟器构建样本库;构建卷积神经网络和卷积长短期记忆核的自回归网络模型,捕获输入数据与输出数据之间复杂的非线性映射关系;在训练集中训练构建的神经网络模型;在测试样本集中使用最小绝对值误差L1与相对L1误差评估训练好的代理模型的性能;输出训练完成且评估性能良好的自回归网络模型,实时采集油藏数据,输入模型,实时预测剩余油分布。发明可以大幅缩短剩余油分布预测时间,进而缩短需要进行多次油藏生产预测的油藏自动历史拟合过程的时间。
-
公开(公告)号:CN114492211A
公开(公告)日:2022-05-13
申请号:CN202210392225.0
申请日:2022-04-15
申请人: 中国石油大学(华东)
IPC分类号: G06F30/27 , G06N3/04 , G06N3/08 , G06Q50/02 , G06F111/10 , G06F113/08
摘要: 本发明公开了一种基于自回归网络模型的剩余油分布预测方法,属于油藏开发技术领域,包括以下步骤:从流体流动的基本渗流微分方程入手,分析剩余油分布的主要影响因素;使用数值模拟器构建样本库;构建卷积神经网络和卷积长短期记忆核的自回归网络模型,捕获输入数据与输出数据之间复杂的非线性映射关系;在训练集中训练构建的神经网络模型;在测试样本集中使用最小绝对值误差L1与相对L1误差评估训练好的代理模型的性能;输出训练完成且评估性能良好的自回归网络模型,实时采集油藏数据,输入模型,实时预测剩余油分布。发明可以大幅缩短剩余油分布预测时间,进而缩短需要进行多次油藏生产预测的油藏自动历史拟合过程的时间。
-