一种视域重叠的多摄像机目标匹配方法

    公开(公告)号:CN108491857B

    公开(公告)日:2022-08-09

    申请号:CN201810141262.8

    申请日:2018-02-11

    摘要: 本发明公开了一种视域重叠的多摄像机目标匹配方法,具体如下;根据摄像机1和摄像机2的前5帧信息计算两台摄像机的视野分界线;提取摄像机1视频中的前景目标,根据多特征融合规则将各个前景目标的特征进行融合获得融合后的特征向量;计算摄像机1中各目标在摄像机2中的投影点,确定待匹配目标的可靠区域后,再计算可靠区域内多特征融合向量;计算多特征融合向量的欧式距离,完成视域重叠的多摄像机目标匹配,距离最近且在设定阈值范围内的目标为匹配目标,保存视野分界线参数;更新视野分界线参数,从当前视频帧的前5帧中选取2组参数,再结合当前帧的视野分界线参数进行线性加权,并对视野分界线模型进行更新。

    应用于矿井巷道移动巡检图像的尺度自适应目标跟踪方法

    公开(公告)号:CN110428450B

    公开(公告)日:2021-11-16

    申请号:CN201910707197.5

    申请日:2019-08-01

    IPC分类号: G06T7/246 G06T7/269 G06K9/46

    摘要: 本发明涉及一种应用于矿井巷道移动巡检图像的尺度自适应目标跟踪方法,属于目标跟踪技术领域,解决了现有矿井目标跟踪算法在目标剧烈变化、遮挡、背景干扰等场景下无法获取较好的跟踪效果的问题。步骤如下:接收矿井巷道移动巡检视频帧序列的当前视频帧,根据上一帧的目标跟踪位置及尺度信息,得到当前视频帧中的待检测图像块;提取当前视频帧中待检测图像块的HOG特征及LQC特征,分别利用HOG特征相关滤波器和LQC特征相关滤波器计算得到HOG特征响应图及LQC特征响应图;对HOG特征响应图及LQC特征响应图进行加权融合响应,将加权融合响应结果中的最大值位置确定为当前视频帧的目标位置;利用尺度滤波器对目标位置进行尺度估计,得到当前视频帧的尺度信息。

    一种应用于矿井机器视觉的图像特征快速匹配方法及系统

    公开(公告)号:CN111814711A

    公开(公告)日:2020-10-23

    申请号:CN202010681652.1

    申请日:2020-07-15

    摘要: 本发明涉及一种应用于矿井机器视觉的图像特征快速匹配方法及系统,属于矿井安全技术领域,解决了现有技术对矿井异常情况检测效率低、实时性差且准确率低的问题。该方法包括对待分析图像进行去噪处理;并进行超像素分割,获得多个图像块;计算每一图像块的信息熵,获得信息熵大于第一预设阈值的图像块;利用SURF算法提取图像块的特征点,从而获取待分析图像的特征点集;采用Harr小波法对特征点集中的特征点进行描述,获得待分析图像的特征点描述符集;基于待分析图像的特征点描述符集将待分析图像特征点集中的特征点与目标图像的特征点进行匹配,以确认矿井是否发生异常。该方法能够快速准确的检测矿井是佛发生异常,有利于对矿井异常技术处理。

    基于卷积神经网络提取图像特征信息的方法及装置

    公开(公告)号:CN111767928A

    公开(公告)日:2020-10-13

    申请号:CN202010597462.1

    申请日:2020-06-28

    IPC分类号: G06K9/46 G06K9/62 G06N3/04

    摘要: 本发明涉及一种基于卷积神经网络提取图像特征信息的方法及装置,属于图像处理技术领域,解决了现有卷积神经网络中的卷积核基于系统随机生成造成浪费大量时间的问题。获取原始图像对应的原始图像矩阵,对原始图像矩阵进行分块,得到N个像素块;基于像素值依次为N个像素块添加标签,得到M个标签;获取每个标签中的1个像素块对应的像素值概率矩阵,基于像素值概率矩阵得到M个标签对应的M个卷积核;将原始图像矩阵输入卷积神经网络,基于M个标签及M个卷积核对原始图像矩阵进行卷积,得到原始图像对应的特征信息。实现了图像特征信息的提取,节省了卷积的时间。

    应用于矿井巷道移动巡检图像的尺度自适应目标跟踪方法

    公开(公告)号:CN110428450A

    公开(公告)日:2019-11-08

    申请号:CN201910707197.5

    申请日:2019-08-01

    IPC分类号: G06T7/246 G06T7/269 G06K9/46

    摘要: 本发明涉及一种应用于矿井巷道移动巡检图像的尺度自适应目标跟踪方法,属于目标跟踪技术领域,解决了现有矿井目标跟踪算法在目标剧烈变化、遮挡、背景干扰等场景下无法获取较好的跟踪效果的问题。步骤如下:接收矿井巷道移动巡检视频帧序列的当前视频帧,根据上一帧的目标跟踪位置及尺度信息,得到当前视频帧中的待检测图像块;提取当前视频帧中待检测图像块的HOG特征及LQC特征,分别利用HOG特征相关滤波器和LQC特征相关滤波器计算得到HOG特征响应图及LQC特征响应图;对HOG特征响应图及LQC特征响应图进行加权融合响应,将加权融合响应结果中的最大值位置确定为当前视频帧的目标位置;利用尺度滤波器对目标位置进行尺度估计,得到当前视频帧的尺度信息。

    一种视域重叠的多摄像机目标匹配方法

    公开(公告)号:CN108491857A

    公开(公告)日:2018-09-04

    申请号:CN201810141262.8

    申请日:2018-02-11

    IPC分类号: G06K9/62 G06K9/46 G06K9/00

    摘要: 本发明公开了一种视域重叠的多摄像机目标匹配方法,具体如下;根据摄像机1和摄像机2的前5帧信息计算两台摄像机的视野分界线;提取摄像机1视频中的前景目标,根据多特征融合规则将各个前景目标的特征进行融合获得融合后的特征向量;计算摄像机1中各目标在摄像机2中的投影点,确定待匹配目标的可靠区域后,再计算可靠区域内多特征融合向量;计算多特征融合向量的欧式距离,完成视域重叠的多摄像机目标匹配,距离最近且在设定阈值范围内的目标为匹配目标,保存视野分界线参数;更新视野分界线参数,从当前视频帧的前5帧中选取2组参数,再结合当前帧的视野分界线参数进行线性加权,并对视野分界线模型进行更新。

    目标与背景颜色相似下的运动目标自动跟踪方法及系统

    公开(公告)号:CN111667509B

    公开(公告)日:2023-05-26

    申请号:CN202010531057.X

    申请日:2020-06-11

    摘要: 本发明涉及目标跟踪技术领域,尤其涉及一种目标与背景颜色相似下的运动目标自动跟踪方法及系统,解决了直接采用CAMshift算法进行目标跟踪时的缺陷。方法包括:步骤S1:处理视频流,得到去噪后的序列帧图像;步骤S2:处理序列帧图像,得到第一帧图像中的前景目标;去除前景目标中的阴影,得到第一帧图像的运动目标区域;步骤S3:读取下一帧图像,将其作为当前帧图像,获取并处理当前帧图像、前一帧图像的运动目标区域的颜色‑曲率概率分布图,得到当前帧图像的候选区域;步骤S4:若当前帧图像的候选区域与前一帧图像的运动目标区域之间的巴氏距离大于距离阈值,将候选区域作为其运动目标区域;重复执行步骤S3与步骤S4,实现所述运动目标的跟踪。

    一种基于SURF特征提取结合CS-LBP描述符的图像拼接方法

    公开(公告)号:CN107945111B

    公开(公告)日:2021-07-27

    申请号:CN201711143013.4

    申请日:2017-11-17

    摘要: 本发明涉及一种基于SURF特征提取结合CS‑LBP描述符的图像拼接方法,包括以下步骤:获取待拼接图像;使用SURF提取待拼接图像的特征点信息;求取上述每个特征点的Harr描述符和CS‑LBP描述符;利用上述得到的Harr描述符和CS‑LBP描述符,确定待拼接图像的特征点匹配对;利用平滑的渐入渐出法对匹配后的图像进行融合,得到拼接图像。CS‑LBP采用中心对称比较方法,相对于传统LBP更简化,运行效率更高;SURF和CS‑LBP结合方法在保持SURF速度快、可以实时处理的基础上,对大面积旋转、光照复杂图像的拼接效果良好。

    一种应用于矿井机器视觉的图像特征快速匹配方法及系统

    公开(公告)号:CN111814711B

    公开(公告)日:2023-08-08

    申请号:CN202010681652.1

    申请日:2020-07-15

    摘要: 本发明涉及一种应用于矿井机器视觉的图像特征快速匹配方法及系统,属于矿井安全技术领域,解决了现有技术对矿井异常情况检测效率低、实时性差且准确率低的问题。该方法包括对待分析图像进行去噪处理;并进行超像素分割,获得多个图像块;计算每一图像块的信息熵,获得信息熵大于第一预设阈值的图像块;利用SURF算法提取图像块的特征点,从而获取待分析图像的特征点集;采用Harr小波法对特征点集中的特征点进行描述,获得待分析图像的特征点描述符集;基于待分析图像的特征点描述符集将待分析图像特征点集中的特征点与目标图像的特征点进行匹配,以确认矿井是否发生异常。该方法能够快速准确的检测矿井是否发生异常,有利于对矿井异常及时处理。