一种三维真空传感器及其制备方法

    公开(公告)号:CN102923644B

    公开(公告)日:2015-05-13

    申请号:CN201210473419.X

    申请日:2012-11-20

    IPC分类号: B81C1/00 B81B7/00 G01L21/10

    摘要: 本发明提供一种三维真空传感器及其制备方法,该方法制备的热电堆和加热器位于不同的平面上,热电堆位于加热器的上面,可以进一步实现热电型真空传感器的微型化;采用干法腐蚀释放结构,通过对腐蚀开口和刻蚀时间的控制,可以获得较小的微加热器到衬底的垂直距离,有利于提高热传导真空计的压强测量上限,同时避免了结构层与衬底黏连的问题,提高了器件的成品率;增加了硅盖板,增强了气体的热传导,有利于提高热传导真空计在较高气体压强端的灵敏度。此外,本发明中所采用的半导体衬底、热电堆和微加热器的材料、以及采用的制备工艺都是半导体工艺中常用的,可以很容易与现有CMOS工艺相兼容。

    一种三维真空传感器及其制备方法

    公开(公告)号:CN102928153B

    公开(公告)日:2014-10-22

    申请号:CN201210473448.6

    申请日:2012-11-20

    IPC分类号: G01L21/10 B81B7/00 B81C1/00

    摘要: 本发明提供一种三维真空传感器及其制备方法,该方法制备的热电堆和加热器位于不同的平面上,热电堆位于加热器的下面,可以进一步实现热电型真空传感器的微型化;采用干法腐蚀释放结构,可以避免湿法腐蚀释放过程中存在的结构层与衬底黏连的问题,提高了器件的成品率;增加了硅盖板,即增加了盖板和加热器之间的气体热传导,有利于提高热传导真空计在较高气体压强端的灵敏度。此外,本发明中所采用的半导体衬底、热电堆和微加热器的材料、以及采用的制备工艺都是半导体工艺中常用的,可以很容易与现有CMOS工艺相兼容。

    一种三维真空传感器及其制备方法

    公开(公告)号:CN102923644A

    公开(公告)日:2013-02-13

    申请号:CN201210473419.X

    申请日:2012-11-20

    IPC分类号: B81C1/00 B81B7/00 G01L21/10

    摘要: 本发明提供一种三维真空传感器及其制备方法,该方法制备的热电堆和加热器位于不同的平面上,热电堆位于加热器的上面,可以进一步实现热电型真空传感器的微型化;采用干法腐蚀释放结构,通过对腐蚀开口和刻蚀时间的控制,可以获得较小的微加热器到衬底的垂直距离,有利于提高热传导真空计的压强测量上限,同时避免了结构层与衬底黏连的问题,提高了器件的成品率;增加了硅盖板,增强了气体的热传导,有利于提高热传导真空计在较高气体压强端的灵敏度。此外,本发明中所采用的半导体衬底、热电堆和微加热器的材料、以及采用的制备工艺都是半导体工艺中常用的,可以很容易与现有CMOS工艺相兼容。

    热绝缘微结构及其制备方法

    公开(公告)号:CN102530847A

    公开(公告)日:2012-07-04

    申请号:CN201210041259.1

    申请日:2012-02-22

    IPC分类号: B81C1/00 B81B7/00

    摘要: 本发明提供一种热绝缘微结构及制备方法,属于微机电系统领域。该热绝缘微结构的制备方法是通过在一SOI衬底顶层硅上光刻并刻蚀出与SOI衬底中绝缘埋层相接的环形沟槽,并在所述环形沟槽中填充一种不易被衬底腐蚀气体或等离子体所腐蚀的腐蚀终止材料,利用干法各向同性腐蚀技术将所述填充腐蚀终止材料的环形沟槽与SOI衬底绝缘埋层组成的腐蚀终止层所包围的区域去除,从而实现微结构体的释放和热绝缘。本发明在不增加工艺复杂度的条件下实现了对热绝缘结构下方的衬底腐蚀形貌的精确控制,从而也达到了对微结构的热绝缘性能的精确控制。同时,既利用了干法各向同性腐蚀技术的释放微结构成品率高的优点,又克服了其不易控制的缺点,具有较好的利用价值。

    一种三维真空传感器及其制备方法

    公开(公告)号:CN102928153A

    公开(公告)日:2013-02-13

    申请号:CN201210473448.6

    申请日:2012-11-20

    IPC分类号: G01L21/10 B81B7/00 B81C1/00

    摘要: 本发明提供一种三维真空传感器及其制备方法,该方法制备的热电堆和加热器位于不同的平面上,热电堆位于加热器的下面,可以进一步实现热电型真空传感器的微型化;采用干法腐蚀释放结构,可以避免湿法腐蚀释放过程中存在的结构层与衬底黏连的问题,提高了器件的成品率;增加了硅盖板,即增加了盖板和加热器之间的气体热传导,有利于提高热传导真空计在较高气体压强端的灵敏度。此外,本发明中所采用的半导体衬底、热电堆和微加热器的材料、以及采用的制备工艺都是半导体工艺中常用的,可以很容易与现有CMOS工艺相兼容。