一种基于规则和统计学习的变形实体识别方法和装置

    公开(公告)号:CN110008307B

    公开(公告)日:2021-12-28

    申请号:CN201910048233.1

    申请日:2019-01-18

    Abstract: 本发明涉及一种基于规则和统计学习的变形实体识别方法和装置。该方法定义目标实体生成变形实体的规则,并且通过这些规则定义演绎生成算法,为每个目标实体生成大量的候选变形实体集合;利用目标实体和变形实体所在文本的上下文语义相似性,提出基于统计学习的方法来识别出上面候选变形实体集合中真正对应于目标实体的变形实体。本发明既可以找到尽可能多的变形实体,又通过识别模型保证了最终识别出的变形实体的准确性,具有良好的实用性。

    一种基于注意力机制的实体关系联合抽取方法和系统

    公开(公告)号:CN109902145A

    公开(公告)日:2019-06-18

    申请号:CN201910048837.6

    申请日:2019-01-18

    Abstract: 本发明涉及一种基于注意力机制的实体关系联合抽取方法和系统。该方法的步骤包括:将训练数据中标注的实体和关系的三元组,转化为每个词对应一个预定义类型的标签的形式;将训练数据的句子中的每个词映射成对应的词向量,输入基于注意力机制的神经网络模型,并通过反向传播算法进行训练,得到标签预测模型;将需进行实体关系抽取的句子输入训练完成的标签预测模型,预测出每个词对应的标签,根据标签和三元组中每个词的对应关系,得到句子中存在的实体关系三元组。该系统包括预处理模块、模型训练模块和结果处理模块。本发明通过更有效的利用句子中的关键信息,提升了关系实体联合抽取的性能,具有良好的实用性。

    一种基于注意力机制的实体关系联合抽取方法和系统

    公开(公告)号:CN109902145B

    公开(公告)日:2021-04-20

    申请号:CN201910048837.6

    申请日:2019-01-18

    Abstract: 本发明涉及一种基于注意力机制的实体关系联合抽取方法和系统。该方法的步骤包括:将训练数据中标注的实体和关系的三元组,转化为每个词对应一个预定义类型的标签的形式;将训练数据的句子中的每个词映射成对应的词向量,输入基于注意力机制的神经网络模型,并通过反向传播算法进行训练,得到标签预测模型;将需进行实体关系抽取的句子输入训练完成的标签预测模型,预测出每个词对应的标签,根据标签和三元组中每个词的对应关系,得到句子中存在的实体关系三元组。该系统包括预处理模块、模型训练模块和结果处理模块。本发明通过更有效的利用句子中的关键信息,提升了关系实体联合抽取的性能,具有良好的实用性。

    一种基于规则和统计学习的变形实体识别方法和装置

    公开(公告)号:CN110008307A

    公开(公告)日:2019-07-12

    申请号:CN201910048233.1

    申请日:2019-01-18

    Abstract: 本发明涉及一种基于规则和统计学习的变形实体识别方法和装置。该方法定义目标实体生成变形实体的规则,并且通过这些规则定义演绎生成算法,为每个目标实体生成大量的候选变形实体集合;利用目标实体和变形实体所在文本的上下文语义相似性,提出基于统计学习的方法来识别出上面候选变形实体集合中真正对应于目标实体的变形实体。本发明既可以找到尽可能多的变形实体,又通过识别模型保证了最终识别出的变形实体的准确性,具有良好的实用性。

Patent Agency Ranking