-
公开(公告)号:CN118072079B
公开(公告)日:2024-12-06
申请号:CN202410123207.1
申请日:2024-01-29
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06V10/80 , G06N3/049 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明提供一种基于脉冲神经网络的小目标物体识别方法及装置,该方法包括:获取待测物体图像;基于双流融合模型对待测物体图像进行分类识别,得到分类识别结果;双流融合模型基于脉冲神经网络和残差网络构建得到,双流融合模型通过以样本物体图像为训练样本,以融合特征为训练特征训练得到;融合特征基于脉冲神经网络输出特征和残差网络输出特征确定,脉冲神经网络和残差网络分别包括多个依次排列的残差块,脉冲神经网络的当前残差块输入的特征为脉冲神经网络的上一个残差块输出的特征和残差网络中与上一个残差块对应的残差块输出的特征之和。本发明所述方法能够提取更丰富的图像特征信息,可提升小目标物体的识别精度。
-
公开(公告)号:CN119339100A
公开(公告)日:2025-01-21
申请号:CN202411371157.5
申请日:2024-09-29
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06V10/44 , G06V10/764 , G06V10/80 , G06N3/045 , G06N3/0464 , G06N3/049
Abstract: 本发明涉及神经网络技术领域,公开了一种基于SNN信息补充的图像识别方法、装置、设备及介质,该方法包括:获取目标图像,并输入图像识别模型中的脉冲神经网络和卷积神经网络,进行特征提取并前向传播;在每个对应处理阶段,对脉冲神经网络和卷积神经网络中当前处理阶段各自对应的输入特征进行处理,得到第一特征和第二特征,将其合并为第三特征,将第三特征和第二特征分别输出至脉冲神经网络和卷积神经网络的下一处理阶段;当脉冲神经网络的最后的处理阶段得到目标特征后,通过其全连接层基于目标特征确定目标图像的分类结果,本发明通过卷积神经网络为脉冲神经网络每个阶段提取的特征提供补充特征,从而提高脉冲神经网络的图像处理性能。
-
公开(公告)号:CN118378153B
公开(公告)日:2024-12-06
申请号:CN202410834192.X
申请日:2024-06-26
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06F18/241 , G06N3/0464 , G06N3/049
Abstract: 本发明提供一种地面材质识别方法、装置、电子设备及存储介质,涉及数据处理技术领域,所述方法包括:采集待识别地面材质引气的压力变化时序数据,将预处理后的压力变化时序数据输入训练好的1D‑SNN模型进行地面材质识别,得到识别结果;其中,1D‑SNN模型是基于1D‑CNN和脉冲神经元构建的,1D‑CNN用于提取压力变化时序数据的局部时序特征,脉冲神经元用于提取压力变化时序数据的全局时序特征。本发明在面对地面材质的多样性和环境的复杂性时,有效提升地面材质识别的准确性和稳定性,进而增强智能车辆的适应性和安全驾驶能力。
-
公开(公告)号:CN118072079A
公开(公告)日:2024-05-24
申请号:CN202410123207.1
申请日:2024-01-29
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06V10/80 , G06N3/049 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明提供一种基于脉冲神经网络的小目标物体识别方法及装置,该方法包括:获取待测物体图像;基于双流融合模型对待测物体图像进行分类识别,得到分类识别结果;双流融合模型基于脉冲神经网络和残差网络构建得到,双流融合模型通过以样本物体图像为训练样本,以融合特征为训练特征训练得到;融合特征基于脉冲神经网络输出特征和残差网络输出特征确定,脉冲神经网络和残差网络分别包括多个依次排列的残差块,脉冲神经网络的当前残差块输入的特征为脉冲神经网络的上一个残差块输出的特征和残差网络中与上一个残差块对应的残差块输出的特征之和。本发明所述方法能够提取更丰富的图像特征信息,可提升小目标物体的识别精度。
-
公开(公告)号:CN118378153A
公开(公告)日:2024-07-23
申请号:CN202410834192.X
申请日:2024-06-26
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06F18/241 , G06N3/0464 , G06N3/049
Abstract: 本发明提供一种地面材质识别方法、装置、电子设备及存储介质,涉及数据处理技术领域,所述方法包括:采集待识别地面材质引气的压力变化时序数据,将预处理后的压力变化时序数据输入训练好的1D‑SNN模型进行地面材质识别,得到识别结果;其中,1D‑SNN模型是基于1D‑CNN和脉冲神经元构建的,1D‑CNN用于提取压力变化时序数据的局部时序特征,脉冲神经元用于提取压力变化时序数据的全局时序特征。本发明在面对地面材质的多样性和环境的复杂性时,有效提升地面材质识别的准确性和稳定性,进而增强智能车辆的适应性和安全驾驶能力。
-
-
-
-