-
公开(公告)号:CN108470046B
公开(公告)日:2020-12-01
申请号:CN201810184478.2
申请日:2018-03-07
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F16/34
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于新闻事件搜索语句的新闻事件排序方法及系统,旨在解决在考虑用户主观信息的情况下,如何实现新闻事件排序的技术问题。为此目的,本发明中的新闻事件排序方法,能够通过预设的新闻事件排序模型对预先获取的新闻事件搜索语句进行识别,得到按照相关度大小排序的新闻事件排序结果。其中,新闻事件搜索语句包含能够表征用户情感倾向的用户主观信息。基于此,本发明能够结合用户对新闻事件的情感倾向,按照新闻事件与用户偏好相关程度进行排序,从而提高新闻事件排序结果的准确性。同时,本发明中的系统能够执行并实现上述方法。
-
公开(公告)号:CN108805254A
公开(公告)日:2018-11-13
申请号:CN201810393788.5
申请日:2018-04-27
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06N3/00
CPC classification number: G06N3/006
Abstract: 本发明属于时序预测技术领域,具体提供了一种时序预测的参数优选系统,旨在解决现有技术对先验知识要求高、可拓展途径较低、时间复杂度高、实际可行度低以及鲁棒性差的技术问题。为此目的,本发明提供的参数优化系统包括参数优化模块,参数优化模块配置为基于预先构建的参数优化模型对预先获取的时序预测模型进行参数优化。其中,参数优化模块包括空间调控单元以及收敛调控单元;空间调控单元配置为基于第一权重函数调控参数优化模块的空间搜索范围;收敛调控单元配置为基于第二权重函数调控参数优化模块的收敛速率。本发明的系统增加了分布式表现,各个个体可以高效交流、协作,且提高了算法的性能。
-
公开(公告)号:CN108763319A
公开(公告)日:2018-11-06
申请号:CN201810396753.7
申请日:2018-04-28
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
CPC classification number: G06Q50/01 , G06N3/0454
Abstract: 本发明属于计算机技术领域,具体提供了一种融合用户行为和文本信息的社交机器人检测方法和系统。旨在解决现有技术手动选取特征、忽略社交媒体帖子之间的逻辑性和时序性以及忽略社交平台用户行为信息的问题,本发明的社交机器人的检测方法包括获取待检测社交媒体用户的历史网络数据和好友网络数据;基于上述数据得到用户文本特征向量、行为特征向量以及好友网络特征向量,并将其融合,得到待检测社交媒体用户的用户特征向量;对用户特征向量进行检测,输出检测结果。本发明的方法更加符合社交媒体自身的特性,从多个维度分析待检测社交媒体用户,提升了检测准确率。本发明的系统同样具有上述有益效果。
-
公开(公告)号:CN108470046A
公开(公告)日:2018-08-31
申请号:CN201810184478.2
申请日:2018-03-07
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F16/34 , G06F16/9535
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于新闻事件搜索语句的新闻事件排序方法及系统,旨在解决在考虑用户主观信息的情况下,如何实现新闻事件排序的技术问题。为此目的,本发明中的新闻事件排序方法,能够通过预设的新闻事件排序模型对预先获取的新闻事件搜索语句进行识别,得到按照相关度大小排序的新闻事件排序结果。其中,新闻事件搜索语句包含能够表征用户情感倾向的用户主观信息。基于此,本发明能够结合用户对新闻事件的情感倾向,按照新闻事件与用户偏好相关程度进行排序,从而提高新闻事件排序结果的准确性。同时,本发明中的系统能够执行并实现上述方法。
-
公开(公告)号:CN105068988B
公开(公告)日:2018-01-30
申请号:CN201510431992.8
申请日:2015-07-21
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明涉及一种多维度和多粒度情感分析方法,包括:构建情感资源,即根据特定领域文本的类别体系构建其情感资源;选择情感倾向词,即选择每个类别下的情感词并确定其情感倾向;判别情感倾向性,包括:判断信息资源的类型;从信息资源中获取情感关键词;从信息资源中识别权威发布者,并获取该信息资源的情感分析结果;对社交类信息进行情感分析;对非专有类别社交类信息的情感倾向进行分析;针对专有类别的社交信息进行情感分析。本发明的情感分析方法能够从多维度、多粒度进行情感分析以提供较高的情感分析识别率和精度。
-
公开(公告)号:CN105068988A
公开(公告)日:2015-11-18
申请号:CN201510431992.8
申请日:2015-07-21
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明涉及一种多维度和多粒度情感分析方法,包括:构建情感资源,即根据特定领域文本的类别体系构建其情感资源;选择情感倾向词,即选择每个类别下的情感词并确定其情感倾向;判别情感倾向性,包括:判断信息资源的类型;从信息资源中获取情感关键词;从信息资源中识别权威发布者,并获取该信息资源的情感分析结果;对社交类信息进行情感分析;对非专有类别社交类信息的情感倾向进行分析;针对专有类别的社交信息进行情感分析。本发明的情感分析方法能够从多维度、多粒度进行情感分析以提供较高的情感分析识别率和精度。
-
公开(公告)号:CN108763319B
公开(公告)日:2022-02-08
申请号:CN201810396753.7
申请日:2018-04-28
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/335 , G06N3/04 , G06Q50/00
Abstract: 本发明属于计算机技术领域,具体提供了一种融合用户行为和文本信息的社交机器人检测方法和系统。旨在解决现有技术手动选取特征、忽略社交媒体帖子之间的逻辑性和时序性以及忽略社交平台用户行为信息的问题,本发明的社交机器人的检测方法包括获取待检测社交媒体用户的历史网络数据和好友网络数据;基于上述数据得到用户文本特征向量、行为特征向量以及好友网络特征向量,并将其融合,得到待检测社交媒体用户的用户特征向量;对用户特征向量进行检测,输出检测结果。本发明的方法更加符合社交媒体自身的特性,从多个维度分析待检测社交媒体用户,提升了检测准确率。本发明的系统同样具有上述有益效果。
-
公开(公告)号:CN107153672A
公开(公告)日:2017-09-12
申请号:CN201710171926.0
申请日:2017-03-22
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于言语行为理论的用户交互意图识别方法及系统,所述用户交互意图识别方法包括:基于外部知识源构建行为标记语词典;根据所述行为标记语词典,自动标注用户在社交媒体平台上输入的在线文本的意图;利用自动标注语料训练基于特征的分类器对所述在线文本的意图进行分类识别,确定用户的交互意图类别。本发明基于言语行为理论的用户交互意图识别方法通过基于外部知识源构建对应不同意图类别的行为标记语词典,并基于行为标记语词典自动标注扩充语料和基于特征分类识别,能够有效识别社交媒体中的用户交互意图,识别准确度高,可用于商务智能、社情舆情、决策评估等领域的意图分析与识别,应用范围广。
-
公开(公告)号:CN109145109B
公开(公告)日:2022-06-03
申请号:CN201710464424.7
申请日:2017-06-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/2458 , G06Q50/00
Abstract: 本发明涉及一种基于社交网络的用户群体消息传播异常分析方法和装置,包括:获取在线社交网络中用户群体的历史聊天记录,根据预先设定的时间跨度,获取历史聊天记录在时间跨度内用户群体中所有用户所发布的消息,作为消息集合;对于消息集合,根据预先设定的时间范围统计用户群体在每个时间范围内所发布的消息总数;基于时序相关性的特征提取法,对每个消息总数的特征进行提取,并将提取结果集合为样本集合;根据消息总数并采用聚类算法为样本集合对样本集合进行聚类,生成异常样本;根据异常样本判定其所在的用户群体存在消息传播异常。由此本发明能够应对数据涌发现象,同时算法直观简单,准确率更高,且本发明应用场景广泛。
-
公开(公告)号:CN108733763B
公开(公告)日:2022-05-17
申请号:CN201810338555.5
申请日:2018-04-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535
Abstract: 本发明公开了一种基于微博热门事件计算关键节点的方法,包括:获取历史热门事件的转发数、评论数、点赞数和阅读数,定义热门值,并确定热门临界值;获取历史热门事件的初步关键博主,获取作为初步关键传播时间,建立关键传播时间的计算公式;获取目标事件的转发数、评论数、点赞数和阅读数,若目标事件的热门值达到热门临界值,则计算出目标事件的的关键传播时间,获得关键时间点;选取在关键时间点附近发微博的若干博主,获取其中与其它博主关联次数最多的博主,即为目标事件的关键博主。本发明还提供了基于微博热门事件计算关键节点的装置。本发明能够在微博热门事件在不可控地爆发之前,找到推动此事件的关键博主,从而使得事件得以控制。
-
-
-
-
-
-
-
-
-