-
公开(公告)号:CN108563686A
公开(公告)日:2018-09-21
申请号:CN201810208801.5
申请日:2018-03-14
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于混合神经网络的社交网络谣言识别方法及系统,旨在解决如何在考虑谣言转发评论信息的情况下,准确识别社交网络中谣言的技术问题。为此目的,本发明中社交网络谣言识别方法,首先利用三种不同的神经网络分别获取用户特征向量、原文特征向量和传播信息特征向量,然后将用户特征向量、原文特征向量和传播信息特征向量融合为新的特征向量,最后利用第四种神经网络对融合后的特征向量进行谣言识别。基于上述步骤,能够快速且准确地检测到社交网络中的谣言。同时,本发明中的系统能够执行并实现上述步骤。
-
公开(公告)号:CN107153672A
公开(公告)日:2017-09-12
申请号:CN201710171926.0
申请日:2017-03-22
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于言语行为理论的用户交互意图识别方法及系统,所述用户交互意图识别方法包括:基于外部知识源构建行为标记语词典;根据所述行为标记语词典,自动标注用户在社交媒体平台上输入的在线文本的意图;利用自动标注语料训练基于特征的分类器对所述在线文本的意图进行分类识别,确定用户的交互意图类别。本发明基于言语行为理论的用户交互意图识别方法通过基于外部知识源构建对应不同意图类别的行为标记语词典,并基于行为标记语词典自动标注扩充语料和基于特征分类识别,能够有效识别社交媒体中的用户交互意图,识别准确度高,可用于商务智能、社情舆情、决策评估等领域的意图分析与识别,应用范围广。
-
公开(公告)号:CN108563686B
公开(公告)日:2021-07-30
申请号:CN201810208801.5
申请日:2018-03-14
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F40/289 , G06N3/04 , G06N3/08
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于混合神经网络的社交网络谣言识别方法及系统,旨在解决如何在考虑谣言转发评论信息的情况下,准确识别社交网络中谣言的技术问题。为此目的,本发明中社交网络谣言识别方法,首先利用三种不同的神经网络分别获取用户特征向量、原文特征向量和传播信息特征向量,然后将用户特征向量、原文特征向量和传播信息特征向量融合为新的特征向量,最后利用第四种神经网络对融合后的特征向量进行谣言识别。基于上述步骤,能够快速且准确地检测到社交网络中的谣言。同时,本发明中的系统能够执行并实现上述步骤。
-
公开(公告)号:CN108805254A
公开(公告)日:2018-11-13
申请号:CN201810393788.5
申请日:2018-04-27
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06N3/00
CPC classification number: G06N3/006
Abstract: 本发明属于时序预测技术领域,具体提供了一种时序预测的参数优选系统,旨在解决现有技术对先验知识要求高、可拓展途径较低、时间复杂度高、实际可行度低以及鲁棒性差的技术问题。为此目的,本发明提供的参数优化系统包括参数优化模块,参数优化模块配置为基于预先构建的参数优化模型对预先获取的时序预测模型进行参数优化。其中,参数优化模块包括空间调控单元以及收敛调控单元;空间调控单元配置为基于第一权重函数调控参数优化模块的空间搜索范围;收敛调控单元配置为基于第二权重函数调控参数优化模块的收敛速率。本发明的系统增加了分布式表现,各个个体可以高效交流、协作,且提高了算法的性能。
-
公开(公告)号:CN108763319A
公开(公告)日:2018-11-06
申请号:CN201810396753.7
申请日:2018-04-28
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
CPC classification number: G06Q50/01 , G06N3/0454
Abstract: 本发明属于计算机技术领域,具体提供了一种融合用户行为和文本信息的社交机器人检测方法和系统。旨在解决现有技术手动选取特征、忽略社交媒体帖子之间的逻辑性和时序性以及忽略社交平台用户行为信息的问题,本发明的社交机器人的检测方法包括获取待检测社交媒体用户的历史网络数据和好友网络数据;基于上述数据得到用户文本特征向量、行为特征向量以及好友网络特征向量,并将其融合,得到待检测社交媒体用户的用户特征向量;对用户特征向量进行检测,输出检测结果。本发明的方法更加符合社交媒体自身的特性,从多个维度分析待检测社交媒体用户,提升了检测准确率。本发明的系统同样具有上述有益效果。
-
公开(公告)号:CN108763319B
公开(公告)日:2022-02-08
申请号:CN201810396753.7
申请日:2018-04-28
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/335 , G06N3/04 , G06Q50/00
Abstract: 本发明属于计算机技术领域,具体提供了一种融合用户行为和文本信息的社交机器人检测方法和系统。旨在解决现有技术手动选取特征、忽略社交媒体帖子之间的逻辑性和时序性以及忽略社交平台用户行为信息的问题,本发明的社交机器人的检测方法包括获取待检测社交媒体用户的历史网络数据和好友网络数据;基于上述数据得到用户文本特征向量、行为特征向量以及好友网络特征向量,并将其融合,得到待检测社交媒体用户的用户特征向量;对用户特征向量进行检测,输出检测结果。本发明的方法更加符合社交媒体自身的特性,从多个维度分析待检测社交媒体用户,提升了检测准确率。本发明的系统同样具有上述有益效果。
-
公开(公告)号:CN109145109B
公开(公告)日:2022-06-03
申请号:CN201710464424.7
申请日:2017-06-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/2458 , G06Q50/00
Abstract: 本发明涉及一种基于社交网络的用户群体消息传播异常分析方法和装置,包括:获取在线社交网络中用户群体的历史聊天记录,根据预先设定的时间跨度,获取历史聊天记录在时间跨度内用户群体中所有用户所发布的消息,作为消息集合;对于消息集合,根据预先设定的时间范围统计用户群体在每个时间范围内所发布的消息总数;基于时序相关性的特征提取法,对每个消息总数的特征进行提取,并将提取结果集合为样本集合;根据消息总数并采用聚类算法为样本集合对样本集合进行聚类,生成异常样本;根据异常样本判定其所在的用户群体存在消息传播异常。由此本发明能够应对数据涌发现象,同时算法直观简单,准确率更高,且本发明应用场景广泛。
-
公开(公告)号:CN108429649B
公开(公告)日:2020-11-06
申请号:CN201810244277.7
申请日:2018-03-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L12/24
Abstract: 本发明公开了一种基于多次单类型采集结果的综合异常判断系统,涉及网络预警技术领域。所述系统包括:阈值生成单元和异常判断单元;所述阈值生成单元,在从被采集系统上获取到的采集数据的基础上,计算判断阈值;所述异常判断单元,在所述判断阈值和所述采集数据的基础上,判断被采集系统运行是正常还是异常。本发明所述系统对采集到的数据进行多种方式进行判断,从而在不接触被监测系统后台日志或硬件数据的情况下准确识别出被检测系统的运行状况,解决了因使用平均值计算抗干扰性太弱,固定阈值判断性能太差,阈值波动范围设置方案单一且低效的问题。
-
公开(公告)号:CN106557552B
公开(公告)日:2020-08-21
申请号:CN201610958001.6
申请日:2016-10-27
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/9535 , G06F16/335 , G06F16/35 , G06Q50/00
Abstract: 本发明公开了一种网络话题热度预测方法。它包括话题检测、热度预测建模、预测热度值计算三个步骤。话题检测部分负责从网络数据中获取与用户给定话题关键词相关的话题数据。预测建模部分按照用户设定的时间粒度大小统计话题检测结果中每个时间段内的话题热度值,并计算高斯过程模型关于话题热度统计时间点的协方差矩阵,构建基于高斯过程的预测模型。预测热度值计算部分针对用户给定的预测时间点,利用构建的高斯过程模型计算话题在给定时间点的热度值。本发明综合利用信息检索技术、分类技术进行话题检测,利用高斯过程模型来进行话题热度预测,提高了话题预测的实用性和有效性。
-
公开(公告)号:CN106126606B
公开(公告)日:2019-08-20
申请号:CN201610453319.9
申请日:2016-06-21
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/2458 , G06F16/33
Abstract: 本发明公开了一种短文本新词发现方法。本方法为:1)从当前短文本中提取一字符串s,计算该字符串s的对称条件概率SCP(s)以及该字符串s的左邻熵HL(s)和右邻熵HL(s);2)取左邻熵HL(s)和右邻熵HL(s)的较小值,记为BE(s);3)计算该字符串s的成词概率Prword(s),根据Prword(s)的值确定词s是否为新词。本发明大大提高了新词发现的准确率。
-
-
-
-
-
-
-
-
-