-
公开(公告)号:CN115834495A
公开(公告)日:2023-03-21
申请号:CN202211247906.4
申请日:2022-10-12
申请人: 中国科学院计算技术研究所
IPC分类号: H04L47/2483 , H04L69/163
摘要: 本发明提出了一种用于加密流量的识别方法和系统,包括:对已标记应用类别的加密流记录提取多个特征,并将该多个特征融合为灰度图;将该灰度图输入具有多层神经网络的卷积识别模型,得到该灰度图的预测类别,基于该预测类别和该标记应用类别构建损失函数,训练该卷积识别模型,得到加密流量识别模型;将待识别加密流记录的多个特征融合为灰度图后输入至该加密流量识别模型,得到待识别加密流记录的识别结果。本发明具有识别准确率高,资源占用小,推理时延低等优点,可以应用于网络管理和网络空间安全领域,在AP和网关等设备上都可以实现灵活部署,通过轻量化的模型来实现低功耗和高服务质量。
-
公开(公告)号:CN115834495B
公开(公告)日:2024-07-16
申请号:CN202211247906.4
申请日:2022-10-12
申请人: 中国科学院计算技术研究所
IPC分类号: H04L47/2483 , H04L69/163
摘要: 本发明提出了一种用于加密流量的识别方法和系统,包括:对已标记应用类别的加密流记录提取多个特征,并将该多个特征融合为灰度图;将该灰度图输入具有多层神经网络的卷积识别模型,得到该灰度图的预测类别,基于该预测类别和该标记应用类别构建损失函数,训练该卷积识别模型,得到加密流量识别模型;将待识别加密流记录的多个特征融合为灰度图后输入至该加密流量识别模型,得到待识别加密流记录的识别结果。本发明具有识别准确率高,资源占用小,推理时延低等优点,可以应用于网络管理和网络空间安全领域,在AP和网关等设备上都可以实现灵活部署,通过轻量化的模型来实现低功耗和高服务质量。
-