-
公开(公告)号:CN106986316A
公开(公告)日:2017-07-28
申请号:CN201710313383.1
申请日:2017-05-05
申请人: 中国科学院过程工程研究所
CPC分类号: C01B21/0617 , B01J27/24 , B01J35/08 , B01J35/1014 , C01P2002/72 , C01P2004/03 , C01P2004/32 , C01P2004/61 , C01P2006/12
摘要: 本发明涉及一种氮化钒材料,所述氮化钒材料由多孔氮化钒纳米片组装而成,具有球形结构,所述球形结构包含由多孔氮化钒纳米片隔离形成的空腔。本发明将钒酸盐溶液与锌盐溶液按照适当比例混合,通过奥斯瓦尔德熟化得到Zn3(OH)2(V2O7)(H2O)2,经过还原氮化后得到所述氮化钒材料。本发明得到的氮化钒材料具有多级微纳结构,孔径分布均匀、合理,其比表面积可达18‑50m2/g,且具有良好的分散性,是一种优良的催化剂载体。作为贵金属基催化剂载体应用于催化甲醇氧化反应时,表现出更高的催化活性和稳定性,在低温燃料电池领域具有良好的应用前景。
-
公开(公告)号:CN107610938A
公开(公告)日:2018-01-19
申请号:CN201710757897.6
申请日:2017-08-29
申请人: 中国科学院过程工程研究所
IPC分类号: H01G11/30 , H01G11/32 , H01M4/36 , H01M4/58 , H01M4/583 , H01M4/86 , H01M10/0525 , B82Y30/00
摘要: 本发明提供了一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用。所述复合材料中尺寸为5~20nm的过渡金属氮化物纳米颗粒嵌布在氮掺杂石墨烯骨架中,且复合材料比表面积较大,含有均匀分布的介孔,导电性良好。所述复合材料的制备方法包括:(1)将模板前驱体、碳源和金属源混合,得到混合后的物料;(2)将步骤(1)所述混合后的物料置于气氛炉中,在非氧化性气氛中煅烧,得到过渡金属氮化物/氮掺杂石墨烯纳米复合材料。所述复合材料用于超级电容器、燃料电池或锂离子电池,应用前景极佳。所述复合材料的制备方法相比于现有技术工艺简单,原料廉价,对设备要求低,能耗低,易于规模化生产。
-
公开(公告)号:CN106986316B
公开(公告)日:2019-02-01
申请号:CN201710313383.1
申请日:2017-05-05
申请人: 中国科学院过程工程研究所
摘要: 本发明涉及一种氮化钒材料,所述氮化钒材料由多孔氮化钒纳米片组装而成,具有球形结构,所述球形结构包含由多孔氮化钒纳米片隔离形成的空腔。本发明将钒酸盐溶液与锌盐溶液按照适当比例混合,通过奥斯瓦尔德熟化得到Zn3(OH)2(V2O7)(H2O)2,经过还原氮化后得到所述氮化钒材料。本发明得到的氮化钒材料具有多级微纳结构,孔径分布均匀、合理,其比表面积可达18‑50m2/g,且具有良好的分散性,是一种优良的催化剂载体。作为贵金属基催化剂载体应用于催化甲醇氧化反应时,表现出更高的催化活性和稳定性,在低温燃料电池领域具有良好的应用前景。
-
公开(公告)号:CN107610938B
公开(公告)日:2020-04-28
申请号:CN201710757897.6
申请日:2017-08-29
申请人: 中国科学院过程工程研究所
IPC分类号: H01G11/30 , H01G11/32 , H01M4/36 , H01M4/58 , H01M4/583 , H01M4/86 , H01M10/0525 , B82Y30/00
摘要: 本发明提供了一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用。所述复合材料中尺寸为5~20nm的过渡金属氮化物纳米颗粒嵌布在氮掺杂石墨烯骨架中,且复合材料比表面积较大,含有均匀分布的介孔,导电性良好。所述复合材料的制备方法包括:(1)将模板前驱体、碳源和金属源混合,得到混合后的物料;(2)将步骤(1)所述混合后的物料置于气氛炉中,在非氧化性气氛中煅烧,得到过渡金属氮化物/氮掺杂石墨烯纳米复合材料。所述复合材料用于超级电容器、燃料电池或锂离子电池,应用前景极佳。所述复合材料的制备方法相比于现有技术工艺简单,原料廉价,对设备要求低,能耗低,易于规模化生产。
-
-
-