一种多模式单自由度无人机测试平台

    公开(公告)号:CN110979735B

    公开(公告)日:2024-12-31

    申请号:CN201911328835.9

    申请日:2019-12-20

    Abstract: 本发明公开一种多模式单自由度无人机测试平台,通过运动分叉机构的可重构特性,实现了单自由度测试平台在多种测试模式之间的转换。该测试平台包括:基座组件,第一、第二运动支链组件,承载平台组件。该测试平台通过第一至第二运动支链组件将基座组件和承载平台组件连接而构成。通过第一至第二运动支链组件的运动分叉结构特性以及承载平台组件中的平台的锁定与释放,来实现测试平台在多种测量模式之间的转变。该发明具有较好的可重构特性,可以分别实现对无人机的偏航、滚转以及俯仰角度的单独调试。

    一种并联结构的无人机力测试平台

    公开(公告)号:CN109987254B

    公开(公告)日:2024-09-06

    申请号:CN201910350150.8

    申请日:2019-04-28

    Abstract: 本发明公开一种并联结构的无人机力测试平台,其包括基座组件、三个支链、动平台、承载平台和球铰;基座组件包括基座底盘、基座机架、平行导轨、主、辅测量弹簧、滑块挡板、直线编码器及其安装座,基座机架均匀布置在基座底盘周向,基座机架为#imgabs0#型,直线编码器安装座固定在基座机架外侧,直线编码器安装在其安装座,平行导轨两端固定在基座机架两端的内侧,主、辅助测量弹簧均套设在平行导轨上,且其一端均与滑块挡板固定连接,另一端分别固定在基座机架的两侧;直线编码器的拉线穿过基座机架固定在滑块挡板上;支链上下两端分别与动平台、滑块挡板可转动连接,动平台与承载平台通过球铰可转动连接。本发明可重构性好,测量结果准确,适配性强。

    一种柔性点阵结构
    3.
    发明公开

    公开(公告)号:CN118361481A

    公开(公告)日:2024-07-19

    申请号:CN202410792011.1

    申请日:2024-06-19

    Abstract: 本发明公开了一种柔性点阵结构,由多个尺寸相同的胞元组成,每个胞元由四个基本元素环围绕旋转轴圆周阵列得到,各基本元素首尾相连,基本元素由具有特定横截面的条状结构在主方向上螺旋扫掠上升一层得到,旋转轴位于胞元中心;胞元在主方向上、垂直于主方向的平面内两个正交方向上呈线性阵列排布;在主方向上,相邻胞元通过基本元素的端部实现连接;在垂直于主方向的平面上,胞元内的各基本元素之间、相邻胞元之间通过延长基本元素局部的方式实现连接。本发明结构具备良好的柔性,能实现偏离主方向一定角度的变形和扭曲,能适应不同的工作环境和任务需求。

    薄壁结构的宏微观协同拓扑设计方法及机器人小腿模型

    公开(公告)号:CN116415459B

    公开(公告)日:2024-02-02

    申请号:CN202310357961.7

    申请日:2023-03-30

    Abstract: 一种薄壁结构的宏微观协同拓扑设计方法,包括以下步骤:(1)设置工况一和工况二(2)复合工况一和工况二,设计初始小腿模型并进行有限元计算;(3)采用拓扑设计的方法重构轻量化的小腿模型;(4)对重构轻量化的小腿模型,外表面的壳体厚度保持2mm,芯部替换成点阵结构;(5)根据有限元计算结果,对壳体进行变厚度设计;变化设计;(7)对拓扑设计的结果进行动态迭代,获得均匀应力场。本发明还提供一种薄壁结构的宏微观协同拓扑设计方法的机器人小腿模型。本发明宏微观协同拓扑设计在实现结构件一体化、高美观度的基础上,总共减轻重量30%,同时强度和刚度满足机器人的使用要求。(6)对芯部的点阵结构进行晶胞变边长或者杆径

    一种无人机惯性导航组件隔振系统结构优化设计方法

    公开(公告)号:CN114877884A

    公开(公告)日:2022-08-09

    申请号:CN202210429893.6

    申请日:2022-04-22

    Abstract: 本发明公开了一种用于无人机惯性导航组件隔振系统结构设计的优化设计方法,该方法通过建立一套系统级的结构优化设计框架体系,开展隔振器的布局优化设计和隔振器本体的结构优化设计,综合考虑了振动解耦率、振动能量传递率、静态稳定性、动态响应等多个性能指标,通过分步式优化设计求解,实现隔振系统的优化设计。本发明可以实现无人机惯性导航组件隔振系统在多个指标维度上的性能优化设计,同时大幅提升设计效率,具有很好的适应性,减少了开发成本。

    一种并联结构的无人机力测试平台

    公开(公告)号:CN109987254A

    公开(公告)日:2019-07-09

    申请号:CN201910350150.8

    申请日:2019-04-28

    Abstract: 本发明公开一种并联结构的无人机力测试平台,其包括基座组件、三个支链、动平台、承载平台和球铰;基座组件包括基座底盘、基座机架、平行导轨、主、辅测量弹簧、滑块挡板、直线编码器及其安装座,基座机架均匀布置在基座底盘周向,基座机架为型,直线编码器安装座固定在基座机架外侧,直线编码器安装在其安装座,平行导轨两端固定在基座机架两端的内侧,主、辅助测量弹簧均套设在平行导轨上,且其一端均与滑块挡板固定连接,另一端分别固定在基座机架的两侧;直线编码器的拉线穿过基座机架固定在滑块挡板上;支链上下两端分别与动平台、滑块挡板可转动连接,动平台与承载平台通过球铰可转动连接。本发明可重构性好,测量结果准确,适配性强。

    一种基于时空有限元模型的机器人结构件优化方法及装置

    公开(公告)号:CN117521452B

    公开(公告)日:2024-05-07

    申请号:CN202311479204.3

    申请日:2023-11-07

    Abstract: 本说明书公开了一种基于时空有限元模型的机器人结构件优化方法及装置。所述方法包括:接收针对机器人结构件的仿真优化指令;基于所述结构件对应的属性信息,构建所述结构件的有限元模型;在仿真环境中对所述结构件施加热载荷,基于所述属性信息以及所述结构件在指定时间内产生的热量信息,确定所述结构件对应的时空热传导控制方程;根据所述时空热传导控制方程,确定所述有限元模型对应的全局热传导有限元方程;在预设时空边界条件的约束下,根据所述属性信息对所述全局热传导有限元方程进行解析,确定所述结构件对应的温度场分布信息,以根据所述温度场分布信息对所述结构件进行优化。

    一种基于热传导本构模型的机器人结构件优化方法及装置

    公开(公告)号:CN117131633B

    公开(公告)日:2024-04-05

    申请号:CN202311219901.5

    申请日:2023-09-20

    Abstract: 本说明书公开了一种基于热传导本构模型的机器人结构件优化方法及装置。该方法包括:根据目标结构件的热量信息以及目标时间,确定目标结构件对应的广义熵;根据热量信息所对应的热通量以及广义熵,确定在广义熵不为负熵的约束下,广义熵与目标结构件的热量之间的目标对应关系;根据目标对应关系以及基于目标对应关系确定出的热力学通量,确定目标结构件对应的全局热力学耗散信息以及每个参考点对应的局部热力学耗散信息;根据局部热力学耗散信息以及热力学通量的分量,确定目标结构件对应的热传导本构模型,热传导本构模型用于表征结构件达到热平衡所需的弛豫时间与目标结构件的微结构特征之间的对应关系,并对目标结构件进行优化。

    一种基于非局域时空模型的机器人结构件优化方法及装置

    公开(公告)号:CN117332523A

    公开(公告)日:2024-01-02

    申请号:CN202311267741.1

    申请日:2023-09-27

    Abstract: 本说明书公开了一种基于非局域时空模型的机器人结构件优化方法及装置。所述方法包括:根据机器人结构件的全局热量耗散信息以及局部热量耗散信息对预先确定的结构件的热传导本构模型进行调整,得到用于描述结构件对应的弛豫时间与微结构特征间的关系的时空非局域热传导模型;根据时空非局域热传导模型,确定在热扩散的特征长度和结构件对应热导率与空间无关的情况下,用于确定结构件对应热扩散和热波的非局域时空特性的时空热传导控制方程;根据热传导控制方程,确定结构件对应的热力学时间信息以及热力学空间信息,并基于热力学时间信息以及热力学空间信息确定结构件的热传导温度分布图,以基于温度分布图对结构件进行优化。

    一种仿人机器人小腿的拓扑重构方法及模型

    公开(公告)号:CN116341336A

    公开(公告)日:2023-06-27

    申请号:CN202310352130.0

    申请日:2023-03-30

    Abstract: 一种仿人机器人小腿的拓扑重构方法,包括以下步骤:(1)设计初始模型;(2)将模型进行拓扑计算;(3)根据拓扑计算结果分析材料的分布特征;(4)将初始模型划分成块体单元;(5)根据材料分布特征移除被镂空的单元;(6)对边界地区的单元进行改型修补;(7)将通过移除法得到的拓扑结构进行有限元计算;(8)对应力较大的部位补充单元,应力较小区域的单元进行二次移除。本发明还提供采用一种仿人机器人小腿的拓扑重构方法的小腿模型。本发明可以有效降低拓扑结构的设计速度,对于发明中的小腿拓扑模型,能减少20%的模型重构时间,模型的材料分布特征保持率76%,模型的完整性好。

Patent Agency Ranking