一种无人机表面的陶瓷基复合材料体系及其制备方法

    公开(公告)号:CN114163260A

    公开(公告)日:2022-03-11

    申请号:CN202111218198.7

    申请日:2021-10-20

    IPC分类号: C04B41/89 C23C24/04

    摘要: 本发明公开了一种无人机表面的陶瓷基复合材料体系及其制备方法,包括陶瓷基复合材料基体,所述陶瓷基复合材料基体覆于飞行器机身表面,在所述陶瓷基复合材料基体上依次沉积有粘结层、阻氧层、阻氧传播层、热膨胀系数缓冲层和隔热降温层;其中,所述粘结层的厚度为100‑200μm,所述阻氧传播层的厚度为30‑50μm,所述热膨胀系数缓冲层的厚度为30‑50μm,所述隔热降温层的厚度为100‑1000μm。本发明制备出的陶瓷基复合材料体系,具有显著的耐高温、高隔热、抗氧化和高阻氧的涂层,使得其能够在高温火灾救援中长期服役使用,服役温度超过1000℃,保证火灾现场救援无人机内部零件温度处于极限工作温度之下,同时表层陶瓷基复合陶瓷材料具有极强的抗氧化性能。

    一种无人机表面的陶瓷基复合材料体系及其制备方法

    公开(公告)号:CN114163260B

    公开(公告)日:2023-01-13

    申请号:CN202111218198.7

    申请日:2021-10-20

    IPC分类号: C04B41/89 C23C24/04

    摘要: 本发明公开了一种无人机表面的陶瓷基复合材料体系及其制备方法,包括陶瓷基复合材料基体,所述陶瓷基复合材料基体覆于飞行器机身表面,在所述陶瓷基复合材料基体上依次沉积有粘结层、阻氧层、阻氧传播层、热膨胀系数缓冲层和隔热降温层;其中,所述粘结层的厚度为100‑200μm,所述阻氧传播层的厚度为30‑50μm,所述热膨胀系数缓冲层的厚度为30‑50μm,所述隔热降温层的厚度为100‑1000μm。本发明制备出的陶瓷基复合材料体系,具有显著的耐高温、高隔热、抗氧化和高阻氧的涂层,使得其能够在高温火灾救援中长期服役使用,服役温度超过1000℃,保证火灾现场救援无人机内部零件温度处于极限工作温度之下,同时表层陶瓷基复合陶瓷材料具有极强的抗氧化性能。

    一种耐高温抗氧化耐烧蚀的铌合金材料及其制备方法

    公开(公告)号:CN114164428B

    公开(公告)日:2024-02-09

    申请号:CN202111218154.4

    申请日:2021-10-20

    IPC分类号: C23C28/00 C23C24/04 C23C8/10

    摘要: 本发明公开了提供一种耐高温抗氧化耐烧蚀的铌合金材料及其制备方法,包括铌基合金基体,所述铌基合金基体上制备有多层梯度涂层材料,所述每层梯度涂层材料由金属层和氧化层组成,所述金属层总厚度为40‑300μm。本发明通过打破传统铌合金材料的工作极限,提高铌合金材料的耐高温、抗氧化和耐烧蚀的性能;将铌基合金的长期服役温度提高到2000℃以上,显著提高了传统铌合金材料的工作极限。

    一种YTaO4/Y3TaO7双相陶瓷及其制备方法与应用

    公开(公告)号:CN114874008B

    公开(公告)日:2023-08-18

    申请号:CN202210460423.6

    申请日:2022-04-24

    摘要: 本发明涉及涂层技术领域,特别涉及一种YTaO4/Y3TaO7双相陶瓷及其制备方法与应用。所述双相陶瓷的制备方法包括以下步骤:S1.采用反相微乳液法制备YTaO4单相粉体和Y3TaO7单相粉体;S2.混合YTaO4单相粉体和Y3TaO7单相粉体,得到混合粉体,随后将混合粉体进行球磨、研磨过筛,接着进行放电等离子烧结,即得所述双相陶瓷。本发明通过引入第二相材料削弱甚至完全抵消了单相稀土钽酸盐在高温下的相变,进而有效提高了材料的硬度和断裂韧性,热导率也随着晶粒尺寸变细而降低,从而解决了传统单相稀土钽酸盐在力学性能和热学性能方面的局限性。