利用磁场传递卫星在轨振动信息的高精度测振方法

    公开(公告)号:CN111351564B

    公开(公告)日:2022-03-29

    申请号:CN202010333278.6

    申请日:2020-04-24

    IPC分类号: G01H11/02

    摘要: 本申请公开了一种利用磁场传递卫星在轨振动信息的高精度测振方法,当振源发生振动时,微型磁强测量装置将随振源共同振动,由于待测振动信号的频率远远小于磁场传播的速度,因此可以认为振动产生的磁场变化信号是瞬时作用在微型磁强测量装置上的,因此微型磁强测量装置探测的磁场信号中包含振动信号的信息,可以利用磁场来传递微振动信息。结合磁强计探头分辨率以及高精度测振试验数据,通过理论计算可得磁场传递的振动信息的分辨率可达10‑3角秒,满足高分辨相机的测量精度需求,可以实现高精度的实时测量。

    基于等离子体的高超声速风洞

    公开(公告)号:CN112067237A

    公开(公告)日:2020-12-11

    申请号:CN202011016587.7

    申请日:2020-09-24

    IPC分类号: G01M9/04

    摘要: 本发明提供了一种基于等离子体的高超声速风洞,用以解决现有技术中风洞无法兼具高马赫数和长工作时间的问题。所述高超声速风洞,包括依次连接的等离子体束源、中性化室、中性化气体流道、试验段、扩压器、真空舱、真空泵组,还包括设置在等离子体束源、中性化室之间的粒子回旋共振加速器;通过中性化室结合等离子束源及粒子回旋共振加速器获得试验用定向的中性气体束流,利用风洞流道改变中性气体束流的基本参数,符合风洞试验需求,试验后的中性气体通过扩压器减速增压,流入真空舱进行工质收集。本发明获得用于风洞试验的马赫数大于10的高超声速气流,有效工作时间大于1min,且对环境无污染。

    基于星载射频放电的等离子体接触器

    公开(公告)号:CN111465163A

    公开(公告)日:2020-07-28

    申请号:CN202010391627.X

    申请日:2020-05-11

    IPC分类号: H05H1/46

    摘要: 本发明公开一种基于星载射频放电的等离子体接触器,主要包括底座、盖板、放电管、Boswell天线、橡胶塞、进气管和永磁体圆环,放电管插入Boswell天线里形成嵌套结构,随后再嵌套到永磁体圆环内,一端堵上橡胶塞,另一端完全敞开,进气管穿透橡胶塞伸进管内,另一端连接气体储罐,嵌套结构整体容纳在底座中,进气管一端穿透橡胶塞伸进放电管一侧的管内,全部部件组合固定在底座上,并顶部封装,天线通过两天线伸出到盖板和底座形成的结构外。本发明产生的等离子体密度不仅远远大于其他放电方式,并克服了过去的冷阴极等电极放电方式中,由于电极放电烧蚀带来的寿命短的问题。

    外置反馈线圈的微型磁阻磁强计

    公开(公告)号:CN107544039A

    公开(公告)日:2018-01-05

    申请号:CN201610617338.0

    申请日:2016-07-29

    IPC分类号: G01R33/09

    摘要: 本发明涉及一种外置反馈线圈的微型磁阻磁强计,包括壳体、传感器X、传感器Y、传感器Z、磁场模拟信号处理电路X、磁场模拟信号处理电路Y、磁场模拟信号处理电路Z等,其中所述激励模块与传感器X、传感器Y、传感器Z相连接;所述电源模块的输入端通过电源开关与电源输入接口相连接,输出端分别与磁场模拟信号处理电路X、磁场模拟信号处理电路Y、磁场模拟信号处理电路Z、主控数字电路、激励模块相连接;所述外置反馈线圈与磁场模拟信号处理电路X、磁场模拟信号处理电路Y和磁场模拟信号处理电路Z相连接。本发明通过外置反馈,实现了磁阻传感器的三轴正交性、低功耗、高分辨率和微体积,同时还具有数据存储和与PC通信的功能。

    卫星大推力变轨发动机喉管部的磁热屏蔽方法

    公开(公告)号:CN102966463B

    公开(公告)日:2015-05-20

    申请号:CN201210499183.7

    申请日:2012-11-29

    IPC分类号: F02K1/44

    摘要: 本发明公开了一种卫星大推力变轨发动机喉管部的磁热屏蔽方法,在卫星大推力变轨发动机喉管部的前端设置紫外激光器,利用紫外激光器产生的紫外光照射发动机喉管内的发动机喷焰并使其电离,同时在发动机喉管部前端的外部圆周设置永磁铁或电磁铁,使发动机喷焰电离后的离子沿磁力线方向运动,避免其与喉管发生碰撞产生热交换。与现有技术相比,本发明通过采用紫外激光器与磁场的结合使用,使得发动机喷管内的喷焰电离并对流向进行磁约束,从而减少了喷焰向喉管的热量船体,降低了发动机工作时喉管部位的温度,延长了喉管部的使用时间,该技术还大幅提高了目前卫星大推力变轨发动机的工作寿命。

    卫星大推力变轨发动机喉管部的磁热屏蔽方法

    公开(公告)号:CN102966463A

    公开(公告)日:2013-03-13

    申请号:CN201210499183.7

    申请日:2012-11-29

    IPC分类号: F02K1/44

    摘要: 本发明公开了一种卫星大推力变轨发动机喉管部的磁热屏蔽方法,在卫星大推力变轨发动机喉管部的前端设置紫外激光器,利用紫外激光器产生的紫外光照射发动机喉管内的发动机喷焰并使其电离,同时在发动机喉管部前端的外部圆周设置永磁铁或电磁铁,使发动机喷焰电离后的离子沿磁力线方向运动,避免其与喉管发生碰撞产生热交换。与现有技术相比,本发明通过采用紫外激光器与磁场的结合使用,使得发动机喷管内的喷焰电离并对流向进行磁约束,从而减少了喷焰向喉管的热量船体,降低了发动机工作时喉管部位的温度,延长了喉管部的使用时间,该技术还大幅提高了目前卫星大推力变轨发动机的工作寿命。

    用于电推进的矢量磁喷嘴

    公开(公告)号:CN102777342A

    公开(公告)日:2012-11-14

    申请号:CN201210274090.4

    申请日:2012-08-03

    IPC分类号: F03H1/00

    CPC分类号: F03H1/0006 F03H1/0093

    摘要: 本发明公开了一种用于电推进的矢量磁喷嘴,由设置在等离子体喷焰喷口前的永磁体和设置在上述喷口后的形成偶极场位型的多个非同心圆线圈组成,永磁铁与与非同心线圈形成双磁镜管以使等离子体在双磁镜管间往复运动,并在非同心线圈的电流调制下等离子体受离子回旋波共振加热,再通过调整等离子体脱离磁喷嘴时多个非同心圆线圈上电流的比例,使推进器的等离子体喷焰喷口外磁场的矢量方向偏离推进器中心轴而导引外部等离子体的流动方向,以改变推力器的推力矢量方向。本发明的矢量磁喷嘴通过矢量推进可以大大减少姿态控制系统推力器的数量,同时大大提高姿态控制系统的可靠性并通过磁喷嘴使得离子的垂直速度,转化成平行速度,提高外流等离子体的平行流速,达到增大推力的目的。

    化学-电磁混合可变比冲的推进器

    公开(公告)号:CN102767496A

    公开(公告)日:2012-11-07

    申请号:CN201210270030.5

    申请日:2012-08-01

    IPC分类号: F03H1/00 H05H1/24

    摘要: 一种化学-电磁混合可变比冲的推进器,包括化学推进器、双磁镜管、电离室和离子回旋波加热室,化学推进器喷管后端连接有磁镜管一,磁镜管一的另一端通过电离室与离子回旋波加热室连接,离子回旋波加热室的另一端连接有磁镜管二,所有连接均为密封连接,化学推进器喷管喷出的化学推进产生的燃气经过磁镜管一进入电离室电离,电离后的燃气在离子回旋波加热室内通过射频离子回旋波加热提高动能,再利用磁镜管二使电离后燃气中的离子在磁镜管之间多次往返加热后喷出等离子体喷焰以产生向前的推力,其中,磁镜管一为永磁铁,磁镜管二为电磁线圈。与单独化学推进和电推进相比,混合推进的推力为化学推进器的2倍以上,在不增加推进剂的情况下,大大增加了推进器的推力和比冲。同时该推进器还具有推力连续可调的能力,特别适合飞行器的小行星着陆控制。