用于图像数据分类的反馈型脉冲神经网络模型训练方法

    公开(公告)号:CN113449864B

    公开(公告)日:2023-08-25

    申请号:CN202110827709.9

    申请日:2021-07-21

    Applicant: 北京大学

    Abstract: 本发明公布了一种用于图像数据分类的反馈型脉冲神经网络模型训练方法,构建反馈型脉冲神经网络模型并通过均衡态的隐式微分对模型进行训练,包括基于整合激活模型IF和泄漏整合激活模型LIF两种脉冲神经元模型、以及单隐层和多隐层两种神经网络结构的反馈型脉冲神经网络模型,采用重参数化方法对反馈连接权重的谱范数进行约束,采用改进方法进行批归一化;本发明能够避免脉冲神经网络模型常见的训练困难问题,用于高性能且高效节能地进行计算机图像数据与神经形态图像视觉数据的分类处理,能够以更少的神经元数量、更小的参数量、和更少的时间步长取得更高的分类正确率。

    用于图像数据分类的反馈型脉冲神经网络模型训练方法

    公开(公告)号:CN113449864A

    公开(公告)日:2021-09-28

    申请号:CN202110827709.9

    申请日:2021-07-21

    Applicant: 北京大学

    Abstract: 本发明公布了一种用于图像数据分类的反馈型脉冲神经网络模型训练方法,构建反馈型脉冲神经网络模型并通过均衡态的隐式微分对模型进行训练,包括基于整合激活模型IF和泄露整合激活模型LIF两种脉冲神经元模型、以及单隐层和多隐层两种神经网络结构的反馈型脉冲神经网络模型,采用重参数化方法对反馈连接权重的谱范数进行约束,采用改进方法进行批归一化;本发明能够避免脉冲神经网络模型常见的训练困难问题,用于高性能且高效节能地进行计算机图像数据与神经形态图像视觉数据的分类处理,能够以更少的神经元数量、更小的参数量、和更少的时间步长取得更高的分类正确率。

Patent Agency Ranking