一种基于小训练样本的脑电信号特征提取方法

    公开(公告)号:CN102306303B

    公开(公告)日:2012-10-31

    申请号:CN201110274365.X

    申请日:2011-09-16

    Abstract: 本发明涉及脑-机接口(Brain-ComputerInterface,BCI)装置中想象动作电位的特征提取方法,具体讲的是正则化方法与CSSD算法相结合的特征提取方法。本发明引入正则化参数,在正则化参数的作用下将目标实验者训练数据的协方差矩阵和辅助实验者训练数据的协方差矩阵相结合构成正则化协方差矩阵,然后构造正则化空间滤波器。然后利用正则化空间滤波器对目标实验者的测试数据进行特征分析,在处理小样本问题时,解决了CSSD算法中特征值不稳定和分类准确率等问题。

    脑机接口的最优电极组自动选取方法

    公开(公告)号:CN102542283B

    公开(公告)日:2013-11-20

    申请号:CN201010619660.X

    申请日:2010-12-31

    Abstract: 脑机接口的最优电极组自动选取方法涉及脑机接口领域。本发明实现最优电极的自动选取,具体涉及共空间模式(common special pattern,CSP)与支持向量机(support vector machine,SVM)相结合的方法实现想象运动脑机接口的最优电极组自动选取。脑机接口中最优电极组的自动选取对于简化脑机接口系统,提高系统分类识别率以及数据传输速率具有重要的影响,利用最优支持向量机SVM线性核函数的相关性质作为最优电极筛选的指标,可以有效地删除冗余电极,显著地降低电极的数目,保留有用电极,提高系统性能,为提高脑机接口技术的普及创造了前提条件。

    一种无需设定阈值的脑电信号中眼电伪迹自动去除的方法

    公开(公告)号:CN102835955A

    公开(公告)日:2012-12-26

    申请号:CN201210331193.X

    申请日:2012-09-08

    Abstract: 本发明提出一种无需人工设定阈值的脑电信号中眼电伪迹自动去除的方法,属于生物信息技术领域,主要应用于脑电信号的预处理过程中。具体包括:对采集的含有眼电伪迹的脑电信号进行独立分量分解;并且求取每个独立分量的峭度、序列renyi熵和样本熵作为特征向量,进而使用k均值聚类分析的方法自动识别出含有眼电伪迹的独立分量,并将其置零,其余分量不变,对信号进行重构,得到纯净的脑电信号。本发明解决了传统的眼电伪迹去除过程中需要人工对伪迹进行识别、费时费力、工作量大的问题,并且本方法无需人工设定阈值就可以实现自动识别并去除眼电伪迹的目的,弥补了以往方法中设定阈值时需要研究人员具备一定的先验知识、主观性强的不足。

    一种快速的脑电信号中眼电伪迹自动识别和去除的方法

    公开(公告)号:CN102697493A

    公开(公告)日:2012-10-03

    申请号:CN201210135556.2

    申请日:2012-05-03

    Abstract: 本发明提出了一种快速的脑电信号中眼电伪迹自动识别和去除的方法,属于生物信息技术领域,主要应用于脑电信号采集与预处理的过程中。具体包括:将采集得到的多导脑电信号和眼电信号进行离散小波变换,获取多尺度的小波系数;将串接小波系数作为独立分量分析的输入,利用基于负熵判据的FastICA算法实现独立成分的快速获取;通过夹角余弦法识别出眼电伪迹后,将该独立成分置零,并经过ICA逆变换将其余成分投影返回到原信号各个电极;最后通过反演小波变换得到去除眼电伪迹的脑电信号。本发明解决了ICA方法应用于含噪脑电信号中分离效果差,收敛速度慢的问题,实现了从脑电中快速自动去除眼电伪迹的功能。

    脑机接口的最优电极组自动选取方法

    公开(公告)号:CN102542283A

    公开(公告)日:2012-07-04

    申请号:CN201010619660.X

    申请日:2010-12-31

    Abstract: 脑机接口的最优电极组自动选取方法涉及脑机接口领域。本发明实现最优电极的自动选取,具体涉及共空间模式(common special pattern,CSP)与支持向量机(support vector machine,SVM)相结合的方法实现想象运动脑机接口的最优电极组自动选取。脑机接口中最优电极组的自动选取对于简化脑机接口系统,提高系统分类识别率以及数据传输速率具有重要的影响,利用最优支持向量机SVM线性核函数的相关性质作为最优电极筛选的指标,可以有效地删除冗余电极,显著地降低电极的数目,保留有用电极,提高系统性能,为提高脑机接口技术的普及创造了前提条件。

    一种无需设定阈值的脑电信号中眼电伪迹自动去除的方法

    公开(公告)号:CN102835955B

    公开(公告)日:2014-02-26

    申请号:CN201210331193.X

    申请日:2012-09-08

    Abstract: 本发明提出一种无需人工设定阈值的脑电信号中眼电伪迹自动去除的方法,属于生物信息技术领域,主要应用于脑电信号的预处理过程中。具体包括:对采集的含有眼电伪迹的脑电信号进行独立分量分解;并且求取每个独立分量的峭度、序列renyi熵和样本熵作为特征向量,进而使用k均值聚类分析的方法自动识别出含有眼电伪迹的独立分量,并将其置零,其余分量不变,对信号进行重构,得到纯净的脑电信号。本发明解决了传统的眼电伪迹去除过程中需要人工对伪迹进行识别、费时费力、工作量大的问题,并且本方法无需人工设定阈值就可以实现自动识别并去除眼电伪迹的目的,弥补了以往方法中设定阈值时需要研究人员具备一定的先验知识、主观性强的不足。

    一种快速的脑电信号中眼电伪迹自动识别和去除的方法

    公开(公告)号:CN102697493B

    公开(公告)日:2013-10-16

    申请号:CN201210135556.2

    申请日:2012-05-03

    Abstract: 本发明提出了一种快速的脑电信号中眼电伪迹自动识别和去除的方法,属于生物信息技术领域,主要应用于脑电信号采集与预处理的过程中。具体包括:将采集得到的多导脑电信号和眼电信号进行离散小波变换,获取多尺度的小波系数;将串接小波系数作为独立分量分析的输入,利用基于负熵判据的FastICA算法实现独立成分的快速获取;通过夹角余弦法识别出眼电伪迹后,将该独立成分置零,并经过ICA逆变换将其余成分投影返回到原信号各个电极;最后通过反演小波变换得到去除眼电伪迹的脑电信号。本发明解决了ICA方法应用于含噪脑电信号中分离效果差,收敛速度慢的问题,实现了从脑电中快速自动去除眼电伪迹的功能。

    一种基于小训练样本的脑电信号特征提取方法

    公开(公告)号:CN102306303A

    公开(公告)日:2012-01-04

    申请号:CN201110274365.X

    申请日:2011-09-16

    Abstract: 本发明涉及脑-机接口(Brain-ComputerInterface,BCI)装置中想象动作电位的特征提取方法,具体讲的是正则化方法与CSSD算法相结合的特征提取方法。本发明引入正则化参数,在正则化参数的作用下将目标实验者训练数据的协方差矩阵和辅助实验者训练数据的协方差矩阵相结合构成正则化协方差矩阵,然后构造正则化空间滤波器。然后利用正则化空间滤波器对目标实验者的测试数据进行特征分析,在处理小样本问题时,解决了CSSD算法中特征值不稳定和分类准确率等问题。

Patent Agency Ranking