-
公开(公告)号:CN113974655A
公开(公告)日:2022-01-28
申请号:CN202110809765.X
申请日:2021-07-17
申请人: 北京工业大学
IPC分类号: A61B5/372
摘要: 本发明公开一种基于脑电信号的癫痫发作预测方法,该方法通过结合经验模态分解和卷积神经网络对癫痫的发作形成预测,并帮助医生进行诊断。主要包括如下步骤:对长期监测的脑电信号进行标记并分段,将分段后的脑电数据进行经验模态分解并提取熵特征,最后利用卷积神经网络对提取到的特征进行学习并对发作前期和发作间期的脑电信号进行分类。本方法采用时频域和非线性的特征提取方法并结合深度神经网络的分类方法,有效提高了癫痫脑电信号预测的准确率,使得医生患者可以在癫痫发作来临前能够做好充分准备,更加有效的治疗癫痫。