-
公开(公告)号:CN116880586A
公开(公告)日:2023-10-13
申请号:CN202310849144.3
申请日:2023-07-11
申请人: 北京工业大学 , 北京市南水北调团城湖管理处
摘要: 本发明提出一种梯级泵站前池水位调节速率的控制方法和系统。其中,方法包括:根据各级泵站的前池的控制水位,设定各级泵站的前池水位的调节速率;采集水厂需求的供水量;由第n级泵站开始,采集各级泵站的分水口的分水量;根据所述各级泵站的前池水位的调节速率、各级泵站的分水口的分水量和水厂需求的供水量,计算各级泵站出水量控制器的控制量;以所述各级泵站出水量控制器的控制量作为各级泵站出水量的设定值。本发明提出的方案能够使用者对梯级泵站中特定的一级或多级的前池水位,按所需要的变化率需要进行调节,而不对其他级泵站的运行造成影响,确保梯级泵站各级的平稳运行。
-
公开(公告)号:CN116147805A
公开(公告)日:2023-05-23
申请号:CN202310428033.5
申请日:2023-04-20
申请人: 北京工业大学 , 北京市南水北调团城湖管理处
摘要: 本发明提出一种用于泵站填料函温度监测的冗余监测方法和系统。方法包括:在每路测量通道采用预定义测量机制的温度传感器;基于当前时刻之前的历史测量值,计算当前时刻测量通道的监测值;根据每路测量通道当前时刻之前的历史监测值的序列,计算当前时刻测量通道的测量异常值判断的阈值;如果当前时刻测量通道的监测值与历史监测值的序列的均值的差值的绝对值大于阈值,则舍弃测量通道的监测值,得到正确测量通道的监测值;对正确监测通道的监测值加权求平均值,求得当前时刻的填料函温度的最终监测值。本发明提出的方案,通过各测量通道的监测值和异常值判断阈值相结合,完成在动态变化的检测对象的异常值检测,进而提出工作异常的传感器通道。
-
公开(公告)号:CN116147805B
公开(公告)日:2023-06-27
申请号:CN202310428033.5
申请日:2023-04-20
申请人: 北京工业大学 , 北京市南水北调团城湖管理处
摘要: 本发明提出一种用于泵站填料函温度监测的冗余监测方法和系统。方法包括:在每路测量通道采用预定义测量机制的温度传感器;基于当前时刻之前的历史测量值,计算当前时刻测量通道的监测值;根据每路测量通道当前时刻之前的历史监测值的序列,计算当前时刻测量通道的测量异常值判断的阈值;如果当前时刻测量通道的监测值与历史监测值的序列的均值的差值的绝对值大于阈值,则舍弃测量通道的监测值,得到正确测量通道的监测值;对正确监测通道的监测值加权求平均值,求得当前时刻的填料函温度的最终监测值。本发明提出的方案,通过各测量通道的监测值和异常值判断阈值相结合,完成在动态变化的检测对象的异常值检测,进而提出工作异常的传感器通道。
-
公开(公告)号:CN116657704A
公开(公告)日:2023-08-29
申请号:CN202310610308.7
申请日:2023-05-26
申请人: 北京工业大学
摘要: 本发明提出一种基于级间反馈的梯级泵站前池水位控制方法和系统。其中,方法包括:获取各级泵站的前池的当前水位、安全水位和各级泵站的当前输出流量;计算各级泵站的前池的安全水位与当前水位的误差;将后一级泵站的流量向前一级泵站反馈;所述前一级泵站根据反馈的后一级泵站的流量和后一级泵站的安全水位与当前水位的误差,计算所述前一级泵站的输出流量;计算各级泵站的输出流量,控制各级泵站的前池的水位至安全水位。本发明提出的方案,根据泵站的多级联动关系,提出了联合控制逻辑方法,对各级泵站的流量进行同步控制,进而同步调节各级前池水位的高度至安全水位。
-
公开(公告)号:CN111598157B
公开(公告)日:2023-09-15
申请号:CN202010405901.4
申请日:2020-05-14
申请人: 北京工业大学
IPC分类号: G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
摘要: 本发明公开了一种基于VGG16网络层级优化的身份证图像分类方法,获取图像数据集VOC2007数据集,进行数据预处理和训练集测试集的划分;构建基于VGG16改进后的卷积神经网络训练模型。利用划分好的训练样本集合进行模型的训练。模型预训练权重调用。本发明通过修改经典分类网络的最后几层普通卷积层为深度可分离卷积层来提高训练速度和识别速度,由于深度可分离卷积层的结构优势,使其可以很明显的提高速度指标,但由于VGG16网络层数较多,需使用预训练方法训练网络。正是由于这两部分的优势结合并通过分析实验中的loss曲线对比可知,用深度可分离卷积层改进后的网络在速度指标上与原普通卷积层的VGG16相比有明显改善,准确率和原网络相当。
-
公开(公告)号:CN111598157A
公开(公告)日:2020-08-28
申请号:CN202010405901.4
申请日:2020-05-14
申请人: 北京工业大学
摘要: 本发明公开了一种基于VGG16网络层级优化的身份证图像分类方法,获取图像数据集VOC2007数据集,进行数据预处理和训练集测试集的划分;构建基于VGG16改进后的卷积神经网络训练模型。利用划分好的训练样本集合进行模型的训练。模型预训练权重调用。本发明通过修改经典分类网络的最后几层普通卷积层为深度可分离卷积层来提高训练速度和识别速度,由于深度可分离卷积层的结构优势,使其可以很明显的提高速度指标,但由于VGG16网络层数较多,需使用预训练方法训练网络。正是由于这两部分的优势结合并通过分析实验中的loss曲线对比可知,用深度可分离卷积层改进后的网络在速度指标上与原普通卷积层的VGG16相比有明显改善,准确率和原网络相当。
-
-
-
-
-