一种物联网环境下基于小样本学习的网络流量分类方法及系统

    公开(公告)号:CN113935398B

    公开(公告)日:2024-06-28

    申请号:CN202110999641.2

    申请日:2021-08-29

    Abstract: 本发明公开了一种物联网环境下基于小样本学习的网络流量分类方法及系统,包括训练阶段和分类阶段;训练阶段包括:对物联网设备流量样本进行统一处理;对训练数据进行学习训练,构建特征提取器模型和多个比较器模型;对多个比较器模型进行集成,形成集成比较器;分类阶段包括采集物联网设备流量并统一处理;根据训练阶段得到的特征提取器模型,对待分类流量样本与物联网设备流量支持集中样本进行特征提取;根据训练阶段得到的集成比较器对提取出的特征向量进行特征比较,从而对待分类的物联网设备流量设备类型进行判别。本发明可以进行快速学习的能力,从而解决在物联网设备数据不充足的情况下进行准确分类的问题。

    一种物联网环境下基于小样本学习的网络流量分类方法及系统

    公开(公告)号:CN113935398A

    公开(公告)日:2022-01-14

    申请号:CN202110999641.2

    申请日:2021-08-29

    Abstract: 本发明公开了一种物联网环境下基于小样本学习的网络流量分类方法及系统,包括训练阶段和分类阶段;训练阶段包括:对物联网设备流量样本进行统一处理;对训练数据进行学习训练,构建特征提取器模型和多个比较器模型;对多个比较器模型进行集成,形成集成比较器;分类阶段包括采集物联网设备流量并统一处理;根据训练阶段得到的特征提取器模型,对待分类流量样本与物联网设备流量支持集中样本进行特征提取;根据训练阶段得到的集成比较器对提取出的特征向量进行特征比较,从而对待分类的物联网设备流量设备类型进行判别。本发明可以进行快速学习的能力,从而解决在物联网设备数据不充足的情况下进行准确分类的问题。

    一种基于多模态特征的小样本学习物联网流量分类方法及系统

    公开(公告)号:CN114553790A

    公开(公告)日:2022-05-27

    申请号:CN202210239823.4

    申请日:2022-03-12

    Abstract: 本发明公开了一种基于多模态特征的小样本学习物联网流量分类方法及系统。该方法包括训练阶段和分类阶段;训练阶段包括:对捕获到的物联网设备流量进行预处理;使用训练数据进行学习训练,构建多模态特征编码器模型;分类阶段包括物联网设备流量采集预处理;根据训练阶段得到的多模态特征编码器,对已标记样本构成的物联网流量支持集中样本以及待分类流量样本样进行多模态特征提取;对获得的特征进行特征比较,从而对待分类的物联网设备流量设备类型进行判别。本发明通过从多个特征维度对于物联网设备产生的网络流量进行准确刻画,从而形成更具表达能力的物联网设备流量指纹,并且基于小样本学习理论构建分类模型,从而解决在物联网设备标记样本量不足的情况下进行准确分类的问题。

    一种基于预训练表征的增量网络流量分类方法及系统

    公开(公告)号:CN119030934A

    公开(公告)日:2024-11-26

    申请号:CN202411108302.0

    申请日:2024-08-13

    Abstract: 本发明公开了一种基于预训练表征的增量网络流量分类方法及系统,该方法可分为三个阶段:基类训练阶段、增量训练阶段和知识融合阶段。基类训练阶段包括:对基类互联网流量样本进行预处理;增量训练阶段包括:对当前增量时间步互联网流量样本进行预处理;知识融合阶段包括:加载特征提取器模型,使用保存的参数对其进行初始化;利用全部互联网流量样本经过特征提取器后经过增量分类器的倒数第二层得到的激活向量作为融合网络的输入使用融合网络对其进行融合;本发明通过构建三个阶段,弥补传统深度学习模型在增量学习领域的不足,实现了对互联网流量分类的增量学习。

    一种实时高效的物联网DDoS攻击检测方法及系统

    公开(公告)号:CN116471048A

    公开(公告)日:2023-07-21

    申请号:CN202310275662.9

    申请日:2023-03-20

    Abstract: 本发明公开了一种实时高效的物联网DDoS攻击检测方法及系统,本发明可分为粗细粒度模型训练阶段和DDoS攻击流量检测阶段。在粗细粒度模型训练阶段,将根据已知类别的物联网DDoS攻击和良性网络流量,训练概率检测模型和流级检测模型中的可学习参数,从而实现自动化的DDoS攻击检测。DDoS攻击流量检测阶段,基于训练完成的概率检测模型和流级检测模型,对网络环境中获取到的真实网络流量进行特征提取并完成DDoS攻击检测。本发明使得经过卷积操作后的特征向量在进行特征权重融合后,能够更加准确地表达网络流量的特征。能实现对DDoS攻击流量的高精度、高效率检测,同时可以适应不同的网络环境,具有更强的泛化能力。

    基于云雾协同的工业互联网敏感数据保护方法

    公开(公告)号:CN110210237A

    公开(公告)日:2019-09-06

    申请号:CN201910459548.5

    申请日:2019-05-29

    Abstract: 本发明公开了基于云雾协同的工业互联网敏感数据保护方法,本方法设计出一个工业敏感数据保护模型。对于工业延时敏感的数据,设计了一种基于Adaboost和本地差分隐私的数据保护方案,在确保数据可用性的基础上保护了敏感数据;对于工业非延时敏感、以云存储为主的数据,设计了一种基于AES加密和Reed-Solomon编码的数据保护方案。本方法在本地采用分布式存储,并且对RS加了相应的限制条件,不仅解决了本地设备存储压力大和本地设备故障导致数据不能恢复的问题,而且提高了编码和解码效率,降低运算成本。

    一种用于应用流量分类的自动化深度学习模型生成方法及系统

    公开(公告)号:CN117633584A

    公开(公告)日:2024-03-01

    申请号:CN202311529529.8

    申请日:2023-11-16

    Abstract: 本发明公开了一种用于应用流量分类的自动化深度学习模型生成方法及系统,包含应用流量预处理阶段,应用流量分类模型架构搜索阶段,应用流量分类模型选择阶段。预处理阶段包括:原始应用流量样本重组与IP混淆;获得包字节序列;对包字节序列转换为矢量矩阵。搜索阶段包含:控制器和隐藏状态表初始化;正常与缩减单元结构搜索;链接单元形成分类模型;模型训练与测试;控制器更新;判断是否达到终止条件。选择阶段包括:模型性能排序;本发明使用强化学习方法,减少了设计过程的主观性和人为偏好的影响,可以实现自动生成对应用流量进行分类的深度学习模型,提高了模型的表达能力和分类性能,实现了更高的准确性与效率。

    基于云雾协同的工业互联网敏感数据保护方法

    公开(公告)号:CN110210237B

    公开(公告)日:2021-02-26

    申请号:CN201910459548.5

    申请日:2019-05-29

    Abstract: 本发明公开了基于云雾协同的工业互联网敏感数据保护方法,本方法设计出一个工业敏感数据保护模型。对于工业延时敏感的数据,设计了一种基于Adaboost和本地差分隐私的数据保护方案,在确保数据可用性的基础上保护了敏感数据;对于工业非延时敏感、以云存储为主的数据,设计了一种基于AES加密和Reed‑Solomon编码的数据保护方案。本方法在本地采用分布式存储,并且对RS加了相应的限制条件,不仅解决了本地设备存储压力大和本地设备故障导致数据不能恢复的问题,而且提高了编码和解码效率,降低运算成本。

Patent Agency Ranking