一种面向微米级软管与微球组件的装配系统

    公开(公告)号:CN104959971B

    公开(公告)日:2017-01-04

    申请号:CN201510424830.1

    申请日:2015-07-17

    IPC分类号: B25J7/00 B81C1/00 B81B7/02

    摘要: 本发明公开了一种面向微米级软管与微球的装配系统,属于微米级软管及精密装配的自动化装配领域。本发明的微装配系统由夹持与装配对象、辅助运动台、同轴对位检测系统、实时监测系统、微器件夹持系统及正交轴系微球空间定位系统六部分组成。其装配流程为:通过同轴对位检测系统对诊断环进行定位,将软管插入诊断环;对微球进行空间定位,将软管插入到微球的微孔中,并进行点胶;竖直向上拉伸软管与微球,微球固定夹具吸附微球,将其固定在诊断环轴向与径向的中心,实时监测系统监控整个装配过程。本发明具有人机协同、可重配置的特点,为柔性自动化装配扩展了实用空间;还提供了一种高精度的装配方法:具有操作简便、自由度低的优点。

    一种面向微米级软管与微球组件的装配系统

    公开(公告)号:CN104959971A

    公开(公告)日:2015-10-07

    申请号:CN201510424830.1

    申请日:2015-07-17

    IPC分类号: B25J7/00 B81C1/00 B81B7/02

    摘要: 本发明公开了一种面向微米级软管与微球的装配系统,属于微米级软管及精密装配的自动化装配领域。本发明的微装配系统由夹持与装配对象、辅助运动台、同轴对位检测系统、实时监测系统、微器件夹持系统及正交轴系微球空间定位系统六部分组成。其装配流程为:通过同轴对位检测系统对诊断环进行定位,将软管插入诊断环;对微球进行空间定位,将软管插入到微球的微孔中,并进行点胶;竖直向上拉伸软管与微球,微球固定夹具吸附微球,将其固定在诊断环轴向与径向的中心,实时监测系统监控整个装配过程。本发明具有人机协同、可重配置的特点,为柔性自动化装配扩展了实用空间;还提供了一种高精度的装配方法:具有操作简便、自由度低的优点。

    一种共焦共像对位微装配系统及校准方法

    公开(公告)号:CN105841617B

    公开(公告)日:2018-10-16

    申请号:CN201610352169.2

    申请日:2016-05-25

    IPC分类号: G01B11/00

    摘要: 一种共焦共像对位微装配系统及校准方法包括一种共焦共像对位微装配系统(简称系统)和一种共焦共像对位微装配校准方法(简称方法);系统主要包括激光共聚焦显微镜、龙门架机构、梯形棱镜及其夹持机构、棱镜位姿调整机构、基体零件及其夹持器、目标零件及其夹持器、基体及目标载物台;方法包括:1)调整梯形棱镜位姿,消除角度偏差;2)完成两块标定板的贴合、对准及固定,再解除两者约束;3)反向分离两块标定板,再把激光共聚焦显微镜移入梯形棱镜正上方;4)通过激光共聚焦显微镜测量两块标定板以及梯形棱镜的中心坐标,求得两块标定板在激光共聚焦显微镜像平面的相对位置误差。本发明简单易行,提高了微装配的对准和装配精度。

    一种共焦共像对位微装配系统及校准方法

    公开(公告)号:CN105841617A

    公开(公告)日:2016-08-10

    申请号:CN201610352169.2

    申请日:2016-05-25

    IPC分类号: G01B11/00

    CPC分类号: G01B11/00

    摘要: 一种共焦共像对位微装配系统及校准方法包括一种共焦共像对位微装配系统(简称系统)和一种共焦共像对位微装配校准方法(简称方法);系统主要包括激光共聚焦显微镜、龙门架机构、梯形棱镜及其夹持机构、棱镜位姿调整机构、基体零件及其夹持器、目标零件及其夹持器、基体及目标载物台;方法包括:1)调整梯形棱镜位姿,消除角度偏差;2)完成两块标定板的贴合、对准及固定,再解除两者约束;3)反向分离两块标定板,再把激光共聚焦显微镜移入梯形棱镜正上方;4)通过激光共聚焦显微镜测量两块标定板以及梯形棱镜的中心坐标,求得两块标定板在激光共聚焦显微镜像平面的相对位置误差。本发明简单易行,提高了微装配的对准和装配精度。

    一种面向同轴对位微装配系统的标定方法

    公开(公告)号:CN103363901B

    公开(公告)日:2016-04-06

    申请号:CN201310295766.2

    申请日:2013-07-15

    IPC分类号: G01B11/00

    摘要: 本发明涉及一种面向同轴对位微装配系统的标定方法,属于微检测与微装配技术领域。本发明方法利用自准直仪,标定棱镜面与自准直仪成像面的平行度、标定基体载物台反射光路和自准直仪成像面的垂直度、标定目标载物台反射光线和自准直仪成像面的垂直度,以及在卸下自准直仪后装上CCD和显微镜头,微调去除安装偏差,实现CCD相机和棱镜的光轴与棱镜面垂直,完成了包括棱镜,目标载物台,基体载物台,显微镜头在内的同轴对位微装配系统各个组成部分相对位姿的标定工作,大大提高系统的装配精度,方法简单易行。