一种量子图卷积神经网络处理图数据的方法

    公开(公告)号:CN113159239B

    公开(公告)日:2021-09-28

    申请号:CN202110716435.6

    申请日:2021-06-28

    摘要: 本发明属于人工智能、机器学习和量子计算领域,涉及一种量子图卷积神经网络处理图数据的方法,包括:对数据预处理;将预处理后的数据制备为多个量子比特;构建具有量子比特输入模块、量子图卷积模块、量子池化模块、量子比特测量模块和网络优化更新模块的量子图卷积神经网络模型;多次迭代训练模型并优化模型中量子门的参数,使输出结果尽可能达到目标输出,实现机器学习任务。本发明利用量子计算和神经网络的优势能够有效处理非欧式空间数据类型的机器学习任务,使量子神经网络不再局限于仅处理结构化数据,极大扩展了量子机器学习的适用范围。此外,本发明的模型还易于封装且具有很强的泛化性能,可根据不同的图数据结构进行扩展。

    一种量子图卷积神经网络处理图数据的方法

    公开(公告)号:CN113159239A

    公开(公告)日:2021-07-23

    申请号:CN202110716435.6

    申请日:2021-06-28

    摘要: 本发明属于人工智能、机器学习和量子计算领域,涉及一种量子图卷积神经网络处理图数据的方法,包括:对数据预处理;将预处理后的数据制备为多个量子比特;构建具有量子比特输入模块、量子图卷积模块、量子池化模块、量子比特测量模块和网络优化更新模块的量子图卷积神经网络模型;多次迭代训练模型并优化模型中量子门的参数,使输出结果尽可能达到目标输出,实现机器学习任务。本发明利用量子计算和神经网络的优势能够有效处理非欧式空间数据类型的机器学习任务,使量子神经网络不再局限于仅处理结构化数据,极大扩展了量子机器学习的适用范围。此外,本发明的模型还易于封装且具有很强的泛化性能,可根据不同的图数据结构进行扩展。