一种融合机器学习和深度学习的恶意软件检测方法

    公开(公告)号:CN114329474B

    公开(公告)日:2024-12-20

    申请号:CN202210006038.4

    申请日:2022-01-05

    Abstract: 本发明公开了一种融合机器学习和深度学习的恶意软件检测方法,采用机器学习(LightGBM)与深度学习(1D‑CNN)相结合的方法作为恶意软件检测模型的基础,该模型可以发掘语义的深度特征,发掘语义上下文关系的时空序列数据特征,同时该模型的特征提取以及模型检测相配合能够更好地进行误差传播,使训练速度更快、效果更好。同时对模型接收到检测样本进行计算,从而判别是否存在恶意软件,比传统地直接进入检测模型具有更高地准确率。此外,本发明的方法简单,检测模型更加轻量化,该模型不仅适用于Microsoft端的恶意软件检测,在移动端也有较好的效果。

    一种配电自动化系统主站的攻击风险评估方法及装置

    公开(公告)号:CN111582673B

    公开(公告)日:2023-03-31

    申请号:CN202010325119.1

    申请日:2020-04-23

    Abstract: 本发明实施例提供了一种配电自动化系统主站的攻击风险评估方法及装置,该方法包括:根据配电自动化系统中不同节点间的可达性关系,以及不同节点间的逻辑关系,建立配电自动化系统主站的攻击树;根据攻击树的最底层节点的基础分,确定最底层节点的攻击概率;根据攻击树的结构,确定至配电自动化系统主站的攻击路径;根据攻击路径上最底层节点的攻击概率,计算攻击路径的攻击概率。上述方法可根据配电自动化系统中的装置调节攻击树,再基于攻击树对配电自动化系统主站进行攻击风险评估,提高了配电自动化系统主站的攻击风险评估方法的可拓展性与精确性,进而提高配电自动化系统的安全性。

    一种配电自动化系统主站的攻击风险评估方法及装置

    公开(公告)号:CN111582673A

    公开(公告)日:2020-08-25

    申请号:CN202010325119.1

    申请日:2020-04-23

    Abstract: 本发明实施例提供了一种配电自动化系统主站的攻击风险评估方法及装置,该方法包括:根据配电自动化系统中不同节点间的可达性关系,以及不同节点间的逻辑关系,建立配电自动化系统主站的攻击树;根据攻击树的最底层节点的基础分,确定最底层节点的攻击概率;根据攻击树的结构,确定至配电自动化系统主站的攻击路径;根据攻击路径上最底层节点的攻击概率,计算攻击路径的攻击概率。上述方法可根据配电自动化系统中的装置调节攻击树,再基于攻击树对配电自动化系统主站进行攻击风险评估,提高了配电自动化系统主站的攻击风险评估方法的可拓展性与精确性,进而提高配电自动化系统的安全性。

    一种融合机器学习和深度学习的恶意软件检测方法

    公开(公告)号:CN114329474A

    公开(公告)日:2022-04-12

    申请号:CN202210006038.4

    申请日:2022-01-05

    Abstract: 本发明公开了一种融合机器学习和深度学习的恶意软件检测方法,采用机器学习(LightGBM)与深度学习(1D‑CNN)相结合的方法作为恶意软件检测模型的基础,该模型可以发掘语义的深度特征,发掘语义上下文关系的时空序列数据特征,同时该模型的特征提取以及模型检测相配合能够更好地进行误差传播,使训练速度更快、效果更好。同时对模型接收到检测样本进行计算,从而判别是否存在恶意软件,比传统地直接进入检测模型具有更高地准确率。此外,本发明的方法简单,检测模型更加轻量化,该模型不仅适用于Microsoft端的恶意软件检测,在移动端也有较好的效果。

Patent Agency Ranking