-
公开(公告)号:CN115329985B
公开(公告)日:2023-10-27
申请号:CN202211087378.0
申请日:2022-09-07
申请人: 北京邮电大学
摘要: 本发明提供了一种无人集群智能模型训练方法、装置和电子设备,涉及通信的技术领域,该方法将无人集群的训练划分为簇内集中式联邦学习和簇间分布式联邦学习两个阶段,簇内集中式学习时,簇头作为模型所有者来和簇内节点进行参数传递,并进行模型聚合,从而缓解了传统的集中式联邦学习方式存在的通信拥塞和计算瓶颈的技术问题;并且,簇间分布式学习时,由于只有邻居簇头间进行参数传输和模型聚合,所以与传统分布式联邦学习相比,本发明还能有效地减少通信能耗。
-
公开(公告)号:CN114785738A
公开(公告)日:2022-07-22
申请号:CN202210677447.7
申请日:2022-06-16
申请人: 北京邮电大学
IPC分类号: H04L47/125 , H04L47/56 , H04L47/6275 , H04L45/12 , H04L45/00
摘要: 本发明提供了一种时间敏感流的调度方法、装置和电子设备,涉及通信的技术领域,包括:获取待调度的时间敏感流集合和目标网络的网络拓扑信息;基于时间敏感流集合和网络拓扑信息,确定目标时间敏感流集合和目标时间敏感流集合对应的目标时隙队列映射关系;基于目标时隙队列映射关系对目标时间敏感流集合中的目标时间敏感流进行调度。本发明方法在从待调度的时间敏感流集合中确定目标时间敏感流时,将时间敏感流的路由代价和交换机端口队列的可用资源情况共同作为可调度条件进行综合考量,从而使得目标网络在调度时间敏感流时能够最大化的利用其网络资源,进而有效地缓解了现有的时间敏感流的调度方法存在的网络负载不均衡的技术问题。
-
公开(公告)号:CN114785738B
公开(公告)日:2022-09-20
申请号:CN202210677447.7
申请日:2022-06-16
申请人: 北京邮电大学
IPC分类号: H04L47/125 , H04L47/56 , H04L47/6275 , H04L45/12 , H04L45/00
摘要: 本发明提供了一种时间敏感流的调度方法、装置和电子设备,涉及通信的技术领域,包括:获取待调度的时间敏感流集合和目标网络的网络拓扑信息;基于时间敏感流集合和网络拓扑信息,确定目标时间敏感流集合和目标时间敏感流集合对应的目标时隙队列映射关系;基于目标时隙队列映射关系对目标时间敏感流集合中的目标时间敏感流进行调度。本发明方法在从待调度的时间敏感流集合中确定目标时间敏感流时,将时间敏感流的路由代价和交换机端口队列的可用资源情况共同作为可调度条件进行综合考量,从而使得目标网络在调度时间敏感流时能够最大化的利用其网络资源,进而有效地缓解了现有的时间敏感流的调度方法存在的网络负载不均衡的技术问题。
-
公开(公告)号:CN116367178B
公开(公告)日:2023-07-25
申请号:CN202310627358.6
申请日:2023-05-31
申请人: 北京邮电大学
摘要: 本发明提供了一种无人集群自适应组网方法与装置,涉及通信的技术领域,该方法首先根据无人节点之间信噪比和链路有效值构建出当前时隙下无人集群对应的图结构,然后利用裂变谱聚类算法对上述图结构进行谱聚类处理,得到多个子图,其中,裂变谱聚类算法包括以下聚类条件:每个子图中无人节点的数量小于或等于预设阈值,每个子图中至少存在一个与其他无人节点之间的信噪比均小于预设信噪比限值的目标无人节点。裂变谱聚类算法的聚类条件能够确保分簇结果中保留高性能通信链路,同时确保簇结构的合理性、稳定性及其通信能力。因此,该方法能够有效地缓解现有的无人集群聚类算法存在的无法保障分簇后的无人集群通信性能的技术问题。
-
公开(公告)号:CN116367178A
公开(公告)日:2023-06-30
申请号:CN202310627358.6
申请日:2023-05-31
申请人: 北京邮电大学
摘要: 本发明提供了一种无人集群自适应组网方法与装置,涉及通信的技术领域,该方法首先根据无人节点之间信噪比和链路有效值构建出当前时隙下无人集群对应的图结构,然后利用裂变谱聚类算法对上述图结构进行谱聚类处理,得到多个子图,其中,裂变谱聚类算法包括以下聚类条件:每个子图中无人节点的数量小于或等于预设阈值,每个子图中至少存在一个与其他无人节点之间的信噪比均小于预设信噪比限值的目标无人节点。裂变谱聚类算法的聚类条件能够确保分簇结果中保留高性能通信链路,同时确保簇结构的合理性、稳定性及其通信能力。因此,该方法能够有效地缓解现有的无人集群聚类算法存在的无法保障分簇后的无人集群通信性能的技术问题。
-
公开(公告)号:CN115329985A
公开(公告)日:2022-11-11
申请号:CN202211087378.0
申请日:2022-09-07
申请人: 北京邮电大学
摘要: 本发明提供了一种无人集群智能模型训练方法、装置和电子设备,涉及通信的技术领域,该方法将无人集群的训练划分为簇内集中式联邦学习和簇间分布式联邦学习两个阶段,簇内集中式学习时,簇头作为模型所有者来和簇内节点进行参数传递,并进行模型聚合,从而缓解了传统的集中式联邦学习方式存在的通信拥塞和计算瓶颈的技术问题;并且,簇间分布式学习时,由于只有邻居簇头间进行参数传输和模型聚合,所以与传统分布式联邦学习相比,本发明还能有效地减少通信能耗。
-
公开(公告)号:CN114942653B
公开(公告)日:2022-10-25
申请号:CN202210881139.6
申请日:2022-07-26
申请人: 北京邮电大学
IPC分类号: G05D1/10
摘要: 本发明提供了一种无人集群飞行策略的确定方法、装置和电子设备,涉及通信的技术领域,包括:获取目标区域内无人集群的位置信息、所有地面用户的位置信息和正常地面基站的通信吞吐量;无人集群包括多个无人机基站;基于每个无人机基站的位置信息和所有地面用户的位置信息,确定每个无人机基站的状态信息;利用目标混合网络模型对所有无人机基站的状态信息和正常地面基站的通信吞吐量进行处理,得到每个无人机基站的动作信息,以确定无人集群的飞行策略。目标混合网络模型为每个无人机基站都设有相应的单智能体网络模型,避免了环境非平稳的问题;目标混合网络模型基于联合动作价值函数进行训练,解决了动作空间维度爆炸的技术问题。
-
公开(公告)号:CN114942653A
公开(公告)日:2022-08-26
申请号:CN202210881139.6
申请日:2022-07-26
申请人: 北京邮电大学
IPC分类号: G05D1/10
摘要: 本发明提供了一种无人集群飞行策略的确定方法、装置和电子设备,涉及通信的技术领域,包括:获取目标区域内无人集群的位置信息、所有地面用户的位置信息和正常地面基站的通信吞吐量;无人集群包括多个无人机基站;基于每个无人机基站的位置信息和所有地面用户的位置信息,确定每个无人机基站的状态信息;利用目标混合网络模型对所有无人机基站的状态信息和正常地面基站的通信吞吐量进行处理,得到每个无人机基站的动作信息,以确定无人集群的飞行策略。目标混合网络模型为每个无人机基站都设有相应的单智能体网络模型,避免了环境非平稳的问题;目标混合网络模型基于联合动作价值函数进行训练,解决了动作空间维度爆炸的技术问题。
-
-
-
-
-
-
-