-
公开(公告)号:CN111046178B
公开(公告)日:2023-06-20
申请号:CN201911200922.6
申请日:2019-11-29
Applicant: 北京邮电大学 , 北京智芯微电子科技有限公司 , 国网河北省电力有限公司信息通信分公司
IPC: G06F16/35 , G06F40/205 , G06N3/0464 , G06N3/0442 , G06N3/045 , G06N3/0475 , G06N3/094
Abstract: 本发明实施例提供的文本序列生成方法及其系统,包括:对抗网络模型包括生成器和判别器;生成器中包含特征反馈网络模块,用于从判别器中调取高阶特征,以生成指导特征向量;生成器基于指导特征向量,生成预输出文本序列的下一个词;判别器根据新构建的预输出文本序列和初始文本序列更新高阶特征;迭代执行上述步骤,直至新构建的预生成文本序列的总词数达到设定阈值时,输入至判别器进行判别,并根据分类判别结果计算更新梯度;根据更新梯度更新生成器的参数;迭代执行上述步骤直至生成器和判别器均收敛后,输出目标文本序列。本发明实施例通过增添特征转换反馈模块,将判别器提取到的特征向量输送至生成器作为指导信号,改善了生成器的生成质量。
-
公开(公告)号:CN111046178A
公开(公告)日:2020-04-21
申请号:CN201911200922.6
申请日:2019-11-29
Applicant: 北京邮电大学 , 北京智芯微电子科技有限公司 , 国网河北省电力有限公司信息通信分公司
IPC: G06F16/35 , G06F40/205 , G06N3/04
Abstract: 本发明实施例提供的文本序列生成方法及其系统,包括:对抗网络模型包括生成器和判别器;生成器中包含特征反馈网络模块,用于从判别器中调取高阶特征,以生成指导特征向量;生成器基于指导特征向量,生成预输出文本序列的下一个词;判别器根据新构建的预输出文本序列和初始文本序列更新高阶特征;迭代执行上述步骤,直至新构建的预生成文本序列的总词数达到设定阈值时,输入至判别器进行判别,并根据分类判别结果计算更新梯度;根据更新梯度更新生成器的参数;迭代执行上述步骤直至生成器和判别器均收敛后,输出目标文本序列。本发明实施例通过增添特征转换反馈模块,将判别器提取到的特征向量输送至生成器作为指导信号,改善了生成器的生成质量。
-
公开(公告)号:CN111813954A
公开(公告)日:2020-10-23
申请号:CN202010599867.9
申请日:2020-06-28
Applicant: 北京邮电大学
IPC: G06F16/36 , G06F40/295 , G06N3/04 , G06N3/08
Abstract: 本发明实施例提供一种文本语句中两实体的关系确定方法、装置和电子设备,该方法包括:确定待测文本语句和位置信息;将待测文本语句和位置信息输入实体关系提取模型,输出与所述待测文本语句和位置信息对应的所述两实体的关系类型;其中,实体关系提取模型是基于样本文本语句和位置信息以及预先确定的对应于样本文本语句和位置信息的两实体关系类型标签进行训练后得到的,实体关系提取模型训练时对样本文本语句和位置信息采用时间衰减注意力机制进行处理,样本文本语句和位置信息由标准人工标注库通过远程监督机制自动扩充。本发明实施例提供的方法、装置和电子设备,实现了评价人体动作识别结果时考虑深度信息,更适用于评价人体动作捕捉。
-
公开(公告)号:CN111813954B
公开(公告)日:2022-11-04
申请号:CN202010599867.9
申请日:2020-06-28
Applicant: 北京邮电大学
IPC: G06F16/36 , G06F40/295 , G06N3/04 , G06N3/08
Abstract: 本发明实施例提供一种文本语句中两实体的关系确定方法、装置和电子设备,该方法包括:确定待测文本语句和位置信息;将待测文本语句和位置信息输入实体关系提取模型,输出与所述待测文本语句和位置信息对应的所述两实体的关系类型;其中,实体关系提取模型是基于样本文本语句和位置信息以及预先确定的对应于样本文本语句和位置信息的两实体关系类型标签进行训练后得到的,实体关系提取模型训练时对样本文本语句和位置信息采用时间衰减注意力机制进行处理,样本文本语句和位置信息由标准人工标注库通过远程监督机制自动扩充。本发明实施例提供的方法、装置和电子设备,实现了评价人体动作识别结果时考虑深度信息,更适用于评价人体动作捕捉。
-
公开(公告)号:CN111626376A
公开(公告)日:2020-09-04
申请号:CN202010515089.0
申请日:2020-06-08
Applicant: 北京邮电大学
IPC: G06K9/62
Abstract: 本发明实施例提供的基于判别联合概率的域适配方法及系统,包括获取历史流量数据集;根据历史流量数据集,构建带标签的源域数据集和带标签的目标域数据集;根据带标签的源域数据集和带标签的目标域数据集,计算源域和目标域之间的联合概率差异;根据联合概率差异获取最小化联合概率差异;基于最小化联合概率差异,将带标签的源域数据集向带标签的目标域数据集进行域适配。本发明实施例提供的域适配方法及系统,通过直接计算最小化联合概率差异,度量边际分布和条件分布的差异,构造了对实质分布差异有效且鲁棒的特征表示,提高了域的可转移性和类的可识别性。
-
-
-
-