一种基于深度学习模型的水库下游水位预测方法

    公开(公告)号:CN112001556B

    公开(公告)日:2022-07-15

    申请号:CN202010879460.1

    申请日:2020-08-27

    摘要: 本发明公开了一种基于深度学习模型的水库下游水位预测方法,采用最大信息系数来筛选下游水位相关因子;在相关性分析的基础上采用遗传算法优化得到单个相关因子间的最佳特征组合;将下游水位相关因子的最佳特征组合作为输入,构建基于卷积神经网络和长短期记忆网络的深度学习模型(CNNLSTM);采用Adam梯度优化算法来训练CNNLSTM模型权重变量,将训练过的CNNLSTM作为水库下游水位预测模型。本发明的预报方法精细地考虑了下游水位的相关因子,并优化了相关因子的特征组合,采用了深度学习预测模型,有效地提高了下游水位的预测精度,对水库调度中准确计算发电出力具有至关重要的作用。

    一种基于深度学习模型的水库下游水位预测方法

    公开(公告)号:CN112001556A

    公开(公告)日:2020-11-27

    申请号:CN202010879460.1

    申请日:2020-08-27

    摘要: 本发明公开了一种基于深度学习模型的水库下游水位预测方法,采用最大信息系数来筛选下游水位相关因子;在相关性分析的基础上采用遗传算法优化得到单个相关因子间的最佳特征组合;将下游水位相关因子的最佳特征组合作为输入,构建基于卷积神经网络和长短期记忆网络的深度学习模型(CNNLSTM);采用Adam梯度优化算法来训练CNNLSTM模型权重变量,将训练过的CNNLSTM作为水库下游水位预测模型。本发明的预报方法精细地考虑了下游水位的相关因子,并优化了相关因子的特征组合,采用了深度学习预测模型,有效地提高了下游水位的预测精度,对水库调度中准确计算发电出力具有至关重要的作用。

    一种基于改进的长短期记忆网络的电力负荷预测方法

    公开(公告)号:CN111985719A

    公开(公告)日:2020-11-24

    申请号:CN202010878240.7

    申请日:2020-08-27

    摘要: 本发明公开了一种基于改进的长短期记忆网络的电力负荷预测方法,采用最大信息系数初步筛选历史负荷这一特征,并结合考虑负荷相关因子带来的影响,采用最大相关最小冗余算法对历史负荷进行进一步刷选,将筛选后的特征集及作为模型的输入,采用改进的长短记忆网络进行电力负荷预测,得到的预测结果与实际的电网负荷进行验证,证明模型的实用性。本发明的预报方法(H-ILSTM)精确考虑了电力负荷及其影响负荷的相关因子,有效的提高了电力负荷预测的精度,对电网运行的安全性和经济性有着一定的提高。

    一种基于改进的长短期记忆网络的电力负荷预测方法

    公开(公告)号:CN111985719B

    公开(公告)日:2023-07-25

    申请号:CN202010878240.7

    申请日:2020-08-27

    摘要: 本发明公开了一种基于改进的长短期记忆网络的电力负荷预测方法,采用最大信息系数初步筛选历史负荷这一特征,并结合考虑负荷相关因子带来的影响,采用最大相关最小冗余算法对历史负荷进行进一步刷选,将筛选后的特征集及作为模型的输入,采用改进的长短记忆网络进行电力负荷预测,得到的预测结果与实际的电网负荷进行验证,证明模型的实用性。本发明的预报方法(H‑ILSTM)精确考虑了电力负荷及其影响负荷的相关因子,有效的提高了电力负荷预测的精度,对电网运行的安全性和经济性有着一定的提高。