一种基于深度学习模型的水库下游水位预测方法

    公开(公告)号:CN112001556B

    公开(公告)日:2022-07-15

    申请号:CN202010879460.1

    申请日:2020-08-27

    摘要: 本发明公开了一种基于深度学习模型的水库下游水位预测方法,采用最大信息系数来筛选下游水位相关因子;在相关性分析的基础上采用遗传算法优化得到单个相关因子间的最佳特征组合;将下游水位相关因子的最佳特征组合作为输入,构建基于卷积神经网络和长短期记忆网络的深度学习模型(CNNLSTM);采用Adam梯度优化算法来训练CNNLSTM模型权重变量,将训练过的CNNLSTM作为水库下游水位预测模型。本发明的预报方法精细地考虑了下游水位的相关因子,并优化了相关因子的特征组合,采用了深度学习预测模型,有效地提高了下游水位的预测精度,对水库调度中准确计算发电出力具有至关重要的作用。

    一种基于深度学习模型的水库下游水位预测方法

    公开(公告)号:CN112001556A

    公开(公告)日:2020-11-27

    申请号:CN202010879460.1

    申请日:2020-08-27

    摘要: 本发明公开了一种基于深度学习模型的水库下游水位预测方法,采用最大信息系数来筛选下游水位相关因子;在相关性分析的基础上采用遗传算法优化得到单个相关因子间的最佳特征组合;将下游水位相关因子的最佳特征组合作为输入,构建基于卷积神经网络和长短期记忆网络的深度学习模型(CNNLSTM);采用Adam梯度优化算法来训练CNNLSTM模型权重变量,将训练过的CNNLSTM作为水库下游水位预测模型。本发明的预报方法精细地考虑了下游水位的相关因子,并优化了相关因子的特征组合,采用了深度学习预测模型,有效地提高了下游水位的预测精度,对水库调度中准确计算发电出力具有至关重要的作用。

    一种基于鲸鱼群算法的无线传感器网络能效优化分簇方法

    公开(公告)号:CN108112049A

    公开(公告)日:2018-06-01

    申请号:CN201711351966.X

    申请日:2017-12-15

    IPC分类号: H04W40/10 H04W52/02 G06N3/00

    摘要: 本发明公开了一种基于鲸鱼群算法的无线传感器网络能效优化分簇方法,包括,汇聚节点将初始配置信息分别发送到所有簇头节点和普通节点,并对网络信息进行汇聚采集;根据当前网络信息,获得所有簇头节点到汇聚节点的最优路由方案和最优分簇方案;根据最优分簇方案和最优路由方案,对整个无线传感器网络进行分簇路由配置;簇头节点对所在分簇进行数据融合并发送到汇聚节点,完成信息汇聚采集。本发明技术方案的方法,在能效优化分簇问题中引入改进的鲸鱼群算法,利用改进鲸鱼群算法在多峰优化问题的求解能力,求解无线传感器网络能效优化分簇问题;同时,路由算法能够有效平衡簇头节点在转发数据时的能量消耗,从而有利于进一步延长网络生命周期。