-
公开(公告)号:CN118521876A
公开(公告)日:2024-08-20
申请号:CN202410978491.0
申请日:2024-07-22
申请人: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC分类号: G06V10/98 , G06N3/045 , G06N3/0464 , G06V10/40 , G06V10/54 , G06V10/74 , G06V10/776 , G06V10/82 , G06V20/40
摘要: 本发明公开了一种基于相似性度量的沉浸式视频质量评价方法及装置,涉及视频处理领域,为了尽可能地解决视频中所存在的冗余信息问题,首先采用随机抽样的方式筛选视频帧;然后考虑到卷积神经网络能够很好地模拟人类视觉感知过程充分捕捉从低层次到高层次的视觉信息进而提取纹理和结构特征,采用预训练的ResNet50模型进行特征提取;并考虑到人类的视觉感知系统在观看视频时不仅会受视频内容的影响还会受到记忆时间的影响,利用一个受主观启发的时间池化策略得到纹理和深度视频的质量分数;最后根据人眼视觉的偏好对纹理和深度视频质量评分进行权重调整得到最终的沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果。
-
公开(公告)号:CN118101938A
公开(公告)日:2024-05-28
申请号:CN202410497734.9
申请日:2024-04-24
申请人: 华侨大学
IPC分类号: H04N19/119 , H04N19/154
摘要: 本发明公开了一种基于感兴趣区域的VVC码率控制方法及装置,涉及视频编码领域,方法包括:使用基于残差SSD网络训练的人脸检测模型检测图像中的人脸区域作为ROI;使用斯塔克尔伯格模型对ROI的失真进行建模,并采用二分法求解ROI的目标比特;计算编码图像的JND图作为空域视觉敏感度,对8x8互不重叠的子块进行运动估计,得到时域视觉敏感度;将有约束问题转化为无约束问题,并采用KKT条件进行最优化求解,得到最优拉格朗日乘子用于进行比特分配。本发明考虑视频会议、视频监控等应用对ROI的需求增长,人眼对ROI区域重点关注,提取空时域感知敏感度,对ROI和nROI的比特分配问题分别建模并进行最优化求解,合理进行比特分配。
-
公开(公告)号:CN118506168A
公开(公告)日:2024-08-16
申请号:CN202410954584.X
申请日:2024-07-17
申请人: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC分类号: G06V10/98 , G06N3/045 , G06N3/0464 , G06T7/13 , G06V10/40 , G06V10/54 , G06V10/776 , G06V10/80 , G06V10/82 , G06V20/40
摘要: 本发明公开一种基于多重特征网络的沉浸式视频质量评价方法及装置,涉及图像处理领域,包括:在沉浸式视频质量评价模型中,通过视频预处理网络对待评价的沉浸式视频包含的多个视点的纹理视频和深度视频进行视点筛选,得到筛选后视点的纹理视频和深度视频,通过时空特征提取网络对筛选后视点的纹理视频和深度视频进行特征提取并计算得到对应视点的纹理视频的质量分数和深度视频的质量分数;通过权重计算网络计算得到筛选后视点的时空轨迹权重,将筛选后视点的时空轨迹权重与对应视点的纹理视频的质量分数和深度视频的质量分数输入质量分数计算模块计算得到沉浸式视频的质量分数。本发明解决现有沉浸式视频质量评价算法效果较差的问题。
-
公开(公告)号:CN118506168B
公开(公告)日:2024-10-15
申请号:CN202410954584.X
申请日:2024-07-17
申请人: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC分类号: G06V10/98 , G06N3/045 , G06N3/0464 , G06T7/13 , G06V10/40 , G06V10/54 , G06V10/776 , G06V10/80 , G06V10/82 , G06V20/40
摘要: 本发明公开一种基于多重特征网络的沉浸式视频质量评价方法及装置,涉及图像处理领域,包括:在沉浸式视频质量评价模型中,通过视频预处理网络对待评价的沉浸式视频包含的多个视点的纹理视频和深度视频进行视点筛选,得到筛选后视点的纹理视频和深度视频,通过时空特征提取网络对筛选后视点的纹理视频和深度视频进行特征提取并计算得到对应视点的纹理视频的质量分数和深度视频的质量分数;通过权重计算网络计算得到筛选后视点的时空轨迹权重,将筛选后视点的时空轨迹权重与对应视点的纹理视频的质量分数和深度视频的质量分数输入质量分数计算模块计算得到沉浸式视频的质量分数。本发明解决现有沉浸式视频质量评价算法效果较差的问题。
-
公开(公告)号:CN118609034A
公开(公告)日:2024-09-06
申请号:CN202411080625.3
申请日:2024-08-08
申请人: 华侨大学 , 厦门松霖科技股份有限公司
IPC分类号: G06V20/40 , G06N3/0442 , G06N3/045 , G06N3/082 , G06V10/25 , G06V10/80 , G06V10/82 , G06V10/98
摘要: 本发明公开了一种基于帧级时间聚合策略的沉浸式视频质量评价方法及装置,涉及视频处理领域,方法包括:通过帧抽样策略去除视频冗余信息,采用卷积网络对沉浸式视频(即多视点纹理加深度视频)不同区域进行多尺度特征提取;接着使用注意力模型对特征进行加权,通过帧级时间聚合策略自适应地筛选沿时间维度的质量分数;最终结合六自由度(Degree of Freedom,DoF)时空轨迹权重获取失真沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果,稳定性和鲁棒性高。
-
公开(公告)号:CN118521876B
公开(公告)日:2024-10-22
申请号:CN202410978491.0
申请日:2024-07-22
申请人: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC分类号: G06V10/98 , G06N3/045 , G06N3/0464 , G06V10/40 , G06V10/54 , G06V10/74 , G06V10/776 , G06V10/82 , G06V20/40
摘要: 本发明公开了一种基于相似性度量的沉浸式视频质量评价方法及装置,涉及视频处理领域,为了尽可能地解决视频中所存在的冗余信息问题,首先采用随机抽样的方式筛选视频帧;然后考虑到卷积神经网络能够很好地模拟人类视觉感知过程充分捕捉从低层次到高层次的视觉信息进而提取纹理和结构特征,采用预训练的ResNet50模型进行特征提取;并考虑到人类的视觉感知系统在观看视频时不仅会受视频内容的影响还会受到记忆时间的影响,利用一个受主观启发的时间池化策略得到纹理和深度视频的质量分数;最后根据人眼视觉的偏好对纹理和深度视频质量评分进行权重调整得到最终的沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果。
-
公开(公告)号:CN118411583B
公开(公告)日:2024-10-22
申请号:CN202410836696.5
申请日:2024-06-26
申请人: 华侨大学
IPC分类号: G06V10/776 , G06N3/0464 , G06V10/54 , G06V10/74 , G06V10/80 , G06V10/82 , G06V20/40
摘要: 本发明公开了一种基于多特征融合的沉浸式视频质量评价方法及装置,涉及视频处理领域,包括:对参考纹理视频序列和失真纹理视频序列采用3D‑LOG滤波器进行特征提取,得到参考纹理特征和失真纹理特征,并计算得到纹理特征相似度,基于纹理特征相似度通过3D‑LOG池化策略得到纹理视频质量分数;根据参考深度视频序列和失真深度视频序列计算得到参考深度特征和失真深度特征;根据参考深度特征和失真深度特征计算得到深度特征相似度并确定梯度权重,根据深度特征相似度和梯度权重计算得到深度视频质量分数;根据纹理视频质量分数和深度视频质量分数计算得到待评价的沉浸式视频的质量分数,解决现有视频评价算法不符合人眼视觉特性和沉浸式视频的特点的问题。
-
公开(公告)号:CN118609034B
公开(公告)日:2024-10-15
申请号:CN202411080625.3
申请日:2024-08-08
申请人: 华侨大学 , 厦门松霖科技股份有限公司
IPC分类号: G06V20/40 , G06N3/0442 , G06N3/045 , G06N3/082 , G06V10/25 , G06V10/80 , G06V10/82 , G06V10/98
摘要: 本发明公开了一种基于帧级时间聚合策略的沉浸式视频质量评价方法及装置,涉及视频处理领域,方法包括:通过帧抽样策略去除视频冗余信息,采用卷积网络对沉浸式视频(即多视点纹理加深度视频)不同区域进行多尺度特征提取;接着使用注意力模型对特征进行加权,通过帧级时间聚合策略自适应地筛选沿时间维度的质量分数;最终结合六自由度(Degree of Freedom,DoF)时空轨迹权重获取失真沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果,稳定性和鲁棒性高。
-
公开(公告)号:CN118411583A
公开(公告)日:2024-07-30
申请号:CN202410836696.5
申请日:2024-06-26
申请人: 华侨大学
IPC分类号: G06V10/776 , G06N3/0464 , G06V10/54 , G06V10/74 , G06V10/80 , G06V10/82 , G06V20/40
摘要: 本发明公开了一种基于多特征融合的沉浸式视频质量评价方法及装置,涉及视频处理领域,包括:对参考纹理视频序列和失真纹理视频序列采用3D‑LOG滤波器进行特征提取,得到参考纹理特征和失真纹理特征,并计算得到纹理特征相似度,基于纹理特征相似度通过3D‑LOG池化策略得到纹理视频质量分数;根据参考深度视频序列和失真深度视频序列计算得到参考深度特征和失真深度特征;根据参考深度特征和失真深度特征计算得到深度特征相似度并确定梯度权重,根据深度特征相似度和梯度权重计算得到深度视频质量分数;根据纹理视频质量分数和深度视频质量分数计算得到待评价的沉浸式视频的质量分数,解决现有视频评价算法不符合人眼视觉特性和沉浸式视频的特点的问题。
-
公开(公告)号:CN118101938B
公开(公告)日:2024-06-25
申请号:CN202410497734.9
申请日:2024-04-24
申请人: 华侨大学
IPC分类号: H04N19/119 , H04N19/154
摘要: 本发明公开了一种基于感兴趣区域的VVC码率控制方法及装置,涉及视频编码领域,方法包括:使用基于残差SSD网络训练的人脸检测模型检测图像中的人脸区域作为ROI;使用斯塔克尔伯格模型对ROI的失真进行建模,并采用二分法求解ROI的目标比特;计算编码图像的JND图作为空域视觉敏感度,对8x8互不重叠的子块进行运动估计,得到时域视觉敏感度;将有约束问题转化为无约束问题,并采用KKT条件进行最优化求解,得到最优拉格朗日乘子用于进行比特分配。本发明考虑视频会议、视频监控等应用对ROI的需求增长,人眼对ROI区域重点关注,提取空时域感知敏感度,对ROI和nROI的比特分配问题分别建模并进行最优化求解,合理进行比特分配。
-
-
-
-
-
-
-
-
-