-
公开(公告)号:CN117456312A
公开(公告)日:2024-01-26
申请号:CN202311779473.1
申请日:2023-12-22
申请人: 华侨大学
IPC分类号: G06V10/774 , G06V10/762 , G06V10/764 , G06V10/82 , G06F16/583
摘要: 本发明提出一种面向无监督图像检索的模拟抗污伪标签增强方法,涉及计算机视觉领域,包括:利用无监督图像检索模型提取图像数据集中所有图像特征,并通过聚类算法为每张图像分配伪标签;采用伯努利随机分布对图像特征向量随机置零以模拟特征污染,获得随机污染特征向量;基于随机污染特征向量计算随机污染后验类别概率,并进行后验类别概率最大池化以获得抗污染后验类别信息;归一化抗污染后验类别信息获得抗污染后验类别概率,将抗污染后验类别概率与聚类产生的伪标签线性组合,以实现伪标签增强,从而改善无监督图像检索准确性,可广泛应用于图像搜索引擎。
-
公开(公告)号:CN116612445B
公开(公告)日:2023-10-31
申请号:CN202310891062.5
申请日:2023-07-20
申请人: 华侨大学
IPC分类号: G06V20/54 , G06V10/762 , G06V10/74 , G06V10/764 , G06V10/774 , G06V10/778 , G06V10/82 , G06N3/088
摘要: 本发明公开了一种基于自适应聚类和困难样本加权的无监督车辆再辨识方法,首先,利用当前聚类参数计算最合适的半径值,提升聚类伪标签对车辆样本噪声的鲁棒性;其次,记忆模块记录所有车辆样本特征向量,利用距离作为车辆样本困难程度加权依据,改善模型对困难车辆样本关注力不足的问题;最后,利用加权困难车辆样本结合对比学习方法训练车辆再辨识模型。本发明可广泛应用于智慧交通和智慧安防中的智能视频监控系统。
-
公开(公告)号:CN117437604A
公开(公告)日:2024-01-23
申请号:CN202311767741.8
申请日:2023-12-21
申请人: 华侨大学
IPC分类号: G06V20/54 , G06N3/088 , G06V10/40 , G06V10/74 , G06V10/762 , G06V10/764 , G06V10/82
摘要: 本发明公开了一种无监督车辆再辨识模型训练方法、车辆再辨识方法及装置,涉及人工智能、机器视觉领域,通过基于深度学习的车辆再辨识模型从无标签车辆图像中学习的车辆图像特征,采用聚类算法进行聚类得到伪标签,并随机选择部分特征数据进行随机放缩,获得随机增强特征;基于随机增强特征计算后验类别概率,并利用随机增强特征与车辆图像特征之间的相似度组合后验类别概率,获得随机增强后验类别概率,利用随机增强后验类别概率赋权伪标签中的非峰值类别概率分布,实现伪标签的动态平滑,得到动态平滑伪标签,改善无监督车辆再辨识训练效果,解决当前无监督车辆再辨识依赖身份伪标签而聚类产生的身份伪标签质量不佳的问题。
-
公开(公告)号:CN117456312B
公开(公告)日:2024-03-12
申请号:CN202311779473.1
申请日:2023-12-22
申请人: 华侨大学
IPC分类号: G06V10/774 , G06V10/762 , G06V10/764 , G06V10/82 , G06F16/583
摘要: 本发明提出一种面向无监督图像检索的模拟抗污伪标签增强方法,涉及计算机视觉领域,包括:利用无监督图像检索模型提取图像数据集中所有图像特征,并通过聚类算法为每张图像分配伪标签;采用伯努利随机分布对图像特征向量随机置零以模拟特征污染,获得随机污染特征向量;基于随机污染特征向量计算随机污染后验类别概率,并进行后验类别概率最大池化以获得抗污染后验类别信息;归一化抗污染后验类别信息获得抗污染后验类别概率,将抗污染后验类别概率与聚类产生的伪标签线性组合,以实现伪标签增强,从而改善无监督图像检索准确性,可广泛应用于图像搜索引擎。
-
公开(公告)号:CN117437604B
公开(公告)日:2024-03-12
申请号:CN202311767741.8
申请日:2023-12-21
申请人: 华侨大学
IPC分类号: G06V20/54 , G06N3/088 , G06V10/40 , G06V10/74 , G06V10/762 , G06V10/764 , G06V10/82
摘要: 本发明公开了一种无监督车辆再辨识模型训练方法、车辆再辨识方法及装置,涉及人工智能、机器视觉领域,通过基于深度学习的车辆再辨识模型从无标签车辆图像中学习的车辆图像特征,采用聚类算法进行聚类得到伪标签,并随机选择部分特征数据进行随机放缩,获得随机增强特征;基于随机增强特征计算后验类别概率,并利用随机增强特征与车辆图像特征之间的相似度组合后验类别概率,获得随机增强后验类别概率,利用随机增强后验类别概率赋权伪标签中的非峰值类别概率分布,实现伪标签的动态平滑,得到动态平滑伪标签,改善无监督车辆再辨识训练效果,解决当前无监督车辆再辨识依赖身份伪标签而聚类产生的身份伪标签质量不佳的问题。
-
公开(公告)号:CN116612445A
公开(公告)日:2023-08-18
申请号:CN202310891062.5
申请日:2023-07-20
申请人: 华侨大学
IPC分类号: G06V20/54 , G06V10/762 , G06V10/74 , G06V10/764 , G06V10/774 , G06V10/778 , G06V10/82 , G06N3/088
摘要: 本发明公开了一种基于自适应聚类和困难样本加权的无监督车辆再辨识方法,首先,利用当前聚类参数计算最合适的半径值,提升聚类伪标签对车辆样本噪声的鲁棒性;其次,记忆模块记录所有车辆样本特征向量,利用距离作为车辆样本困难程度加权依据,改善模型对困难车辆样本关注力不足的问题;最后,利用加权困难车辆样本结合对比学习方法训练车辆再辨识模型。本发明可广泛应用于智慧交通和智慧安防中的智能视频监控系统。
-
公开(公告)号:CN116777926B
公开(公告)日:2023-10-31
申请号:CN202311053453.6
申请日:2023-08-21
申请人: 华侨大学
IPC分类号: G06T7/10 , G06N3/0464 , G06N3/08
摘要: 本发明涉及图像分割领域,公开了基于左右分和式轻量卷积神经网络的裂缝分割方法及装置,方法包含以下步骤:S1,原始裂缝图片输入到左右分和式轻量卷积神经网络;S2,所述左分式结构输出特征映射#imgabs0#;S3,所述右分式结构输出特征映射#imgabs1#;S4,第i层神经构件融合左分式结构的输出特征映射#imgabs2#与右分式结构的输出特征映射#imgabs3#,输出融合特征#imgabs4#,作为下一层神经结构的输入特征映射#imgabs5#;最后一层神经构件输出的融合特征#imgabs6#作为最终输出,表达裂缝语义分割特征。本发明的左分式采用卷积与最大池化层运算,右分式采用轻量异质卷积与平均池化层运算,将左右两个分式的输出特征相加,既增强了左右分式特征学习的互补性,又实现了网络轻量化。
-
公开(公告)号:CN116777926A
公开(公告)日:2023-09-19
申请号:CN202311053453.6
申请日:2023-08-21
申请人: 华侨大学
IPC分类号: G06T7/10 , G06N3/0464 , G06N3/08
摘要: 本发明涉及图像分割领域,公开了基于左右分和式轻量卷积神经网络的裂缝分割方法及装置,方法包含以下步骤:S1,原始裂缝图片输入到左右分和式轻量卷积神经网络;S2,所述左分式结构输出特征映射#imgabs0#;S3,所述右分式结构输出特征映射#imgabs1#;S4,第i层神经构件融合左分式结构的输出特征映射#imgabs2#与右分式结构的输出特征映射#imgabs3#,输出融合特征#imgabs4#,作为下一层神经结构的输入特征映射#imgabs5#;最后一层神经构件输出的融合特征#imgabs6#作为最终输出,表达裂缝语义分割特征。本发明的左分式采用卷积与最大池化层运算,右分式采用轻量异质卷积与平均池化层运算,将左右两个分式的输出特征相加,既增强了左右分式特征学习的互补性,又实现了网络轻量化。
-
-
-
-
-
-
-