-
公开(公告)号:CN112560734B
公开(公告)日:2023-10-10
申请号:CN202011532832.X
申请日:2020-12-23
Applicant: 华南农业大学
IPC: G06V20/40 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于深度学习的重获取视频检测方法、系统、设备及介质,所述方法包括:获取原始视频数据集和重获取视频数据集,所述重获取视频数据集通过拍摄设备对成像设备显示的原始视频数据进行采集获取;根据原始视频数据集和重获取视频数据集,获取训练数据集;对训练数据集中的训练视频数据进行预处理;以残差网络作为重获取视频检测模型,利用预处理后的训练视频数据对重获取视频检测模型进行训练,得到训练好的重获取视频检测模型;利用训练好的重获取视频检测模型对待测视频进行检测,判定是否为重获取视频。本发明能够实现重获取视频的检测,借鉴图像领域的研究方法和手段,一改传统的依靠手动提取特征的检测方法。
-
公开(公告)号:CN112560734A
公开(公告)日:2021-03-26
申请号:CN202011532832.X
申请日:2020-12-23
Applicant: 华南农业大学
Abstract: 本发明公开了一种基于深度学习的重获取视频检测方法、系统、设备及介质,所述方法包括:获取原始视频数据集和重获取视频数据集,所述重获取视频数据集通过拍摄设备对成像设备显示的原始视频数据进行采集获取;根据原始视频数据集和重获取视频数据集,获取训练数据集;对训练数据集中的训练视频数据进行预处理;以残差网络作为重获取视频检测模型,利用预处理后的训练视频数据对重获取视频检测模型进行训练,得到训练好的重获取视频检测模型;利用训练好的重获取视频检测模型对待测视频进行检测,判定是否为重获取视频。本发明能够实现重获取视频的检测,借鉴图像领域的研究方法和手段,一改传统的依靠手动提取特征的检测方法。
-