-
公开(公告)号:CN113268985B
公开(公告)日:2023-06-20
申请号:CN202110451394.2
申请日:2021-04-26
Applicant: 华南理工大学
IPC: G06F40/295 , G06N5/04 , G06N3/0464
Abstract: 本发明公开了一种基于关系路径的远程监督关系抽取方法、装置及介质,其中方法包括以下步骤:通过远程监督机制将知识库中的实体对和文本语料中的实体对进行对齐,构建实体对句子集合,根据实体对的内容将句子划分为多个包;通过直接句子编码模块获取实体对的相应关系的预测概率;针对每个包对应的实体对的推理关系路径,通过关系路径编码模块获取关系路径推理出相应关系的预测概率;在联合学习模块中,结合直接句子编码模块中的信息和关系路径编码模块中的信息获取最终对应实体对的预测关系。本发明采用了联合学习框架将直接句子的特征信息和关系路径的推理信息合理地结合起来,提高关系抽取的精准度,可广泛应用于自然语言处理领域。
-
公开(公告)号:CN111160343A
公开(公告)日:2020-05-15
申请号:CN201911405977.0
申请日:2019-12-31
Applicant: 华南理工大学
Abstract: 本发明公开了一种基于Self-Attention的离线数学公式识别方法,包括:对输入的数学公式图像进行预处理;编码阶段:对数学公式图像进行特征提取;将提取的特征的隐向量转换为多头的自注意力机制输入所需的维度;对提取的特征的隐向量进行编码,获得特征结果向量;解码阶段:依次输入字符到嵌入层,获得嵌入向量;将特征结果向量以及嵌入向量输入到网络块,获取输入字符的结果向量;获取输入字符的结果向量对应的的概率向量,找出概率向量中最大概率值索引对应的字符作为生成的字符;循环解码阶段,获得数学公式图像对应的latex字符序列。本发明仅仅使用注意力机制,不仅避免了LSTM固有的长距离依赖的问题,而且极大提升了模型的训练效率和识别准确率。
-
公开(公告)号:CN113268985A
公开(公告)日:2021-08-17
申请号:CN202110451394.2
申请日:2021-04-26
Applicant: 华南理工大学
IPC: G06F40/295 , G06N5/04 , G06N3/04
Abstract: 本发明公开了一种基于关系路径的远程监督关系抽取方法、装置及介质,其中方法包括以下步骤:通过远程监督机制将知识库中的实体对和文本语料中的实体对进行对齐,构建实体对句子集合,根据实体对的内容将句子划分为多个包;通过直接句子编码模块获取实体对的相应关系的预测概率;针对每个包对应的实体对的推理关系路径,通过关系路径编码模块获取关系路径推理出相应关系的预测概率;在联合学习模块中,结合直接句子编码模块中的信息和关系路径编码模块中的信息获取最终对应实体对的预测关系。本发明采用了联合学习框架将直接句子的特征信息和关系路径的推理信息合理地结合起来,提高关系抽取的精准度,可广泛应用于自然语言处理领域。
-
公开(公告)号:CN111160343B
公开(公告)日:2023-03-28
申请号:CN201911405977.0
申请日:2019-12-31
Applicant: 华南理工大学
IPC: G06V20/62 , G06V30/19 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/047 , G06N3/08
Abstract: 本发明公开了一种基于Self‑Attention的离线数学公式识别方法,包括:对输入的数学公式图像进行预处理;编码阶段:对数学公式图像进行特征提取;将提取的特征的隐向量转换为多头的自注意力机制输入所需的维度;对提取的特征的隐向量进行编码,获得特征结果向量;解码阶段:依次输入字符到嵌入层,获得嵌入向量;将特征结果向量以及嵌入向量输入到网络块,获取输入字符的结果向量;获取输入字符的结果向量对应的的概率向量,找出概率向量中最大概率值索引对应的字符作为生成的字符;循环解码阶段,获得数学公式图像对应的latex字符序列。本发明仅仅使用注意力机制,不仅避免了LSTM固有的长距离依赖的问题,而且极大提升了模型的训练效率和识别准确率。
-
-
-