一种基于铝燃料储能的能源转化系统及方法

    公开(公告)号:CN114991890A

    公开(公告)日:2022-09-02

    申请号:CN202210509756.3

    申请日:2022-05-11

    摘要: 本发明公开了一种基于铝燃料储能的能源转化系统及方法,包括铝‑水反应器、蒸汽发生器、冷凝式锅炉、换热器和太阳能供热发电系统等。采用高温高压和粒径较小的铝粉促进铝‑水反应的开始和进行,同时提高混合气体进入蒸汽‑氢气透平的初始温度和压力。将反应产生的液态水重新泵入蒸汽发生器再次进行反应,减少系统热量损失的同时完成了产物的循环。混合气体经过冷凝后可能有一部分无法被冷凝,其同氢气进入氢气干燥器被吸收,同时从蒸汽透平出来的水蒸汽也存在损失,因此仍需每隔一段时间对液态水进行补充。本发明通过反应将太阳能供热发电转化为铝燃料中的化学能,间接减弱了太阳能发电的储运问题,整个过程贯彻环保理念,有利于碳减排的进行。

    一种基于铝燃料储能的能源转化系统及方法

    公开(公告)号:CN114991890B

    公开(公告)日:2023-06-09

    申请号:CN202210509756.3

    申请日:2022-05-11

    摘要: 本发明公开了一种基于铝燃料储能的能源转化系统及方法,包括铝‑水反应器、蒸汽发生器、冷凝式锅炉、换热器和太阳能供热发电系统等。采用高温高压和粒径较小的铝粉促进铝‑水反应的开始和进行,同时提高混合气体进入蒸汽‑氢气透平的初始温度和压力。将反应产生的液态水重新泵入蒸汽发生器再次进行反应,减少系统热量损失的同时完成了产物的循环。混合气体经过冷凝后可能有一部分无法被冷凝,其同氢气进入氢气干燥器被吸收,同时从蒸汽透平出来的水蒸汽也存在损失,因此仍需每隔一段时间对液态水进行补充。本发明通过反应将太阳能供热发电转化为铝燃料中的化学能,间接减弱了太阳能发电的储运问题,整个过程贯彻环保理念,有利于碳减排的进行。

    一种基于铝-水反应的氢气-蒸汽联合循环发电系统及方法

    公开(公告)号:CN114856737B

    公开(公告)日:2023-01-17

    申请号:CN202210510679.3

    申请日:2022-05-11

    摘要: 本发明公开了一种基于铝‑水反应的氢气‑蒸汽联合循环发电系统及方法,包括太阳能光热供热系统、可再生能源供电电解氧化铝再生装置、铝‑水反应器、换热器、冷凝器等。针对铝燃料反应启动困难且反应程度低的问题,采取多种活化方式耦合的方式提高反应程度和反应效率。针对系统余热利用的问题,利用系统中反应的水和生成的水形成循环利用并进行换热和供热,引入系统的水进行闭环换热,减少热量损失。在系统中水会被循环利用,但在循环过程中水蒸汽会产生部分损失,需要定时补充水以继续反应的进行。铝‑水反应产物和水蒸汽均用于发电,系统循环发电过程中基本不涉及碳排放,供电供热是以可再生能源和太阳能为主,减少发电过程中的环境隐患。

    一种基于铝-水反应的氢气-蒸汽联合循环发电系统及方法

    公开(公告)号:CN114856737A

    公开(公告)日:2022-08-05

    申请号:CN202210510679.3

    申请日:2022-05-11

    摘要: 本发明公开了一种基于铝‑水反应的氢气‑蒸汽联合循环发电系统及方法,包括太阳能光热供热系统、可再生能源供电电解氧化铝再生装置、铝‑水反应器、换热器、冷凝器等。针对铝燃料反应启动困难且反应程度低的问题,采取多种活化方式耦合的方式提高反应程度和反应效率。针对系统余热利用的问题,利用系统中反应的水和生成的水形成循环利用并进行换热和供热,引入系统的水进行闭环换热,减少热量损失。在系统中水会被循环利用,但在循环过程中水蒸汽会产生部分损失,需要定时补充水以继续反应的进行。铝‑水反应产物和水蒸汽均用于发电,系统循环发电过程中基本不涉及碳排放,供电供热是以可再生能源和太阳能为主,减少发电过程中的环境隐患。

    一种耦合煤地下气化工艺的高碱煤富氧燃烧系统

    公开(公告)号:CN116576458A

    公开(公告)日:2023-08-11

    申请号:CN202310657344.9

    申请日:2023-06-05

    摘要: 一种耦合煤地下气化工艺的高碱煤富氧燃烧系统,包括空分装置、地下气化炉、合成气净化装置、锅炉及内部的空预器、烟气净化装置和碳捕集与储存装置;本发明将煤地下气化工艺与高碱煤富氧燃烧耦合,空分装置同时为富氧燃烧锅炉和地下气化炉提供氧气,氧气与锅炉排出的烟气混合后作为锅炉内富氧燃烧的助燃气体和地下气化炉内气化反应的气化剂,锅炉排出的剩余烟气送入碳捕集与储存装置进行二氧化碳的捕集和储存,从而减少二氧化碳的排放;高碱煤在地下气化炉内发生气化反应生成合成气,然后输送至地表进行利用,是一种环境友好型的开采方式;合成气在除去携带的煤灰颗粒后送入锅炉作为燃料,减少了锅炉内碱金属和碱土金属的数量,从而缓解了积灰结渣问题。