-
公开(公告)号:CN112507581B
公开(公告)日:2023-04-07
申请号:CN202011298743.3
申请日:2020-11-18
Applicant: 华能澜沧江水电股份有限公司 , 武汉大学 , 华能集团技术创新中心有限公司
IPC: G06F30/23
Abstract: 本发明提供可避免畸形计算单元的岩石细观数值模型生成方法及系统,方法包括:步骤1.通过数值图像处理得到岩石试样的显微图像特征,在空间域内进行基于点饱和理论的随机撒点,提取矿物颗粒空间位置,对颗粒集合体在岩石试样边界内进行基于Voronoi图的空间区域剖分,生成Voronoi多边形,模拟矿物颗粒不规则形状的细观几何结构;步骤2.根据多边形的几何信息计算其质心坐标,采用质心迭代法,重新进行空间剖分,直到满足设定的迭代停止标准;将矿物颗粒的所有短边替换为短边中点,并重新生成岩石矿物颗粒模型;步骤3.对模型进行有限元网格划分,并在颗粒边界和内部插入无厚度界面单元,生成能够模拟岩石开裂的有限元数值模型。
-
公开(公告)号:CN111856464A
公开(公告)日:2020-10-30
申请号:CN202010748917.5
申请日:2020-07-30
Applicant: 武汉大学 , 华能澜沧江水电股份有限公司 , 华能集团技术创新中心有限公司
Abstract: 本发明公开一种基于单控制点信息的车载SAR的DEM提取方法,包括以下步骤:数据预处理、干涉相位计算、相位解缠、距离改正、相位改正和高程改正;本发明只需要一个控制点信息即可获得实现车载SAR的DEM提取工作,可有效简化外业工作,通过仿真试验分析了基于单控制点信息的DEM提取方法的误差和各干涉参数对结果的影响,证明了该方法的理论精度和可实现性,明确了基线参数对DEM精度的巨大影响,要求基线长度估计的精度至少达到毫米级,经验证,基于单控制点信息的DEM提取方法得到的DEM误差仅为0.30m,有效且高精度。
-
公开(公告)号:CN115200556A
公开(公告)日:2022-10-18
申请号:CN202210843243.6
申请日:2022-07-18
Applicant: 华能澜沧江水电股份有限公司 , 武汉大学 , 华能集团技术创新中心有限公司
Abstract: 本发明公开一种高海拔矿区测绘方法和装置、存储介质,包括:通过无人机获取待测量区的地形数据信息;根据地形数据信息,得到数字基本表面模型;对数字基本表面模型进行图像化,得到待测量区的正射影像。采用本发明的技术方案,可使无人机航摄在高海拔地区的开展测绘工作。
-
公开(公告)号:CN112505700A
公开(公告)日:2021-03-16
申请号:CN202011362140.5
申请日:2020-11-27
Applicant: 华能澜沧江水电股份有限公司 , 武汉大学 , 华能集团技术创新中心有限公司
IPC: G01S13/90
Abstract: 本发明公开了一种基于星载升降轨SAR和时序InSAR的滑坡识别方法及系统,方法包括:获取多幅目标区域的星载SAR升轨影像和降轨影像,在升、降轨影像中选取各自主影像,将升、降轨影像与主影像进行对准,确保两幅影像中同一位置的像元对应地面上的同一回波点;通过小基线方法组成干涉对,对主影像和副影像进行共扼相乘,得到干涉条纹图和相干图,对干涉条纹图和相干图进行自适应滤波;通过相干性选取高相干点,并对干涉条纹图进行相位解缠;通过数字高程模型和空间滤波方法去除大气相位影像,利用二次线性回归方法去除轨道相位影响,以高相干点建立线性模型,并构建SVD方程,进行形变估计。上述方法能够有效的对高山峡谷区域潜在滑坡隐患区域进行识别。
-
公开(公告)号:CN111896955A
公开(公告)日:2020-11-06
申请号:CN202010781924.5
申请日:2020-08-06
Applicant: 武汉大学 , 华能澜沧江水电股份有限公司 , 华能集团技术创新中心有限公司
IPC: G01S13/90
Abstract: 本发明公开一种船载SAR交轨干涉处理方法,包括以下步骤:前置滤波、块影像粗配准、块影像精配准、影像全局精配准、干涉图滤波、相位解缠、基于图像同名点的基线估计和基于控制点的基线估计;本发明包括主辅影像滤波、配准、干涉计算和干涉图的滤波、相位解缠等工作,针对船载双天线SAR的成像特点,图像配准采用了分块配准方法,利用块影像粗配准和块影像精配准,提高图像的相干系数,达到了较高的相干性;通过干涉图滤波确保了相干信息和滤波的结果在同一位置具有同样的大小,避免了滤波结果被重叠部分的相干值影响;通过基于图像同名点的基线估计方法和基于控制点的基线估计方法,实现毫米甚至亚毫米级的基线估计精度。
-
公开(公告)号:CN111856464B
公开(公告)日:2021-11-26
申请号:CN202010748917.5
申请日:2020-07-30
Applicant: 武汉大学 , 华能澜沧江水电股份有限公司 , 华能集团技术创新中心有限公司
Abstract: 本发明公开一种基于单控制点信息的车载SAR的DEM提取方法,包括以下步骤:数据预处理、干涉相位计算、相位解缠、距离改正、相位改正和高程改正;本发明只需要一个控制点信息即可获得实现车载SAR的DEM提取工作,可有效简化外业工作,通过仿真试验分析了基于单控制点信息的DEM提取方法的误差和各干涉参数对结果的影响,证明了该方法的理论精度和可实现性,明确了基线参数对DEM精度的巨大影响,要求基线长度估计的精度至少达到毫米级,经验证,基于单控制点信息的DEM提取方法得到的DEM误差仅为0.30m,有效且高精度。
-
公开(公告)号:CN112507581A
公开(公告)日:2021-03-16
申请号:CN202011298743.3
申请日:2020-11-18
Applicant: 华能澜沧江水电股份有限公司 , 武汉大学 , 华能集团技术创新中心有限公司
IPC: G06F30/23
Abstract: 本发明提供可避免畸形计算单元的岩石细观数值模型生成方法及系统,方法包括:步骤1.通过数值图像处理得到岩石试样的显微图像特征,在空间域内进行基于点饱和理论的随机撒点,提取矿物颗粒空间位置,对颗粒集合体在岩石试样边界内进行基于Voronoi图的空间区域剖分,生成Voronoi多边形,模拟矿物颗粒不规则形状的细观几何结构;步骤2.根据多边形的几何信息计算其质心坐标,采用质心迭代法,重新进行空间剖分,直到满足设定的迭代停止标准;将矿物颗粒的所有短边替换为短边中点,并重新生成岩石矿物颗粒模型;步骤3.对模型进行有限元网格划分,并在颗粒边界和内部插入无厚度界面单元,生成能够模拟岩石开裂的有限元数值模型。
-
公开(公告)号:CN111896954A
公开(公告)日:2020-11-06
申请号:CN202010781923.0
申请日:2020-08-06
Applicant: 华能澜沧江水电股份有限公司 , 武汉大学 , 华能集团技术创新中心有限公司
Abstract: 本发明公开一种船载SAR影像的角反射器坐标定位方法,包括以下步骤:选择角反射器、SAR影像特征计算、空间特征计算、特征点修正和推导角反射器中心点;本发明基于尺度空间,同时考虑角反射器在SAR影像中的辐射特征和空间特征,经验证,本发明对于高分辨率船载SAR影像的角反射器定位结果与基于控制点进行几何校正后的角反射器坐标定位结果在距离向和方位向上的平均相对误差、均方根误差都小于0.31个像元,精度相当,结果吻合,证明了本发明不依赖于角反射器的地理坐标信息,角反射器坐标定位精度可达子像元级,且因为角反射器在方位向上聚焦效果优于距离向,所以方位向坐标定位精度要优于距离向坐标。
-
公开(公告)号:CN111896955B
公开(公告)日:2021-12-28
申请号:CN202010781924.5
申请日:2020-08-06
Applicant: 武汉大学 , 华能澜沧江水电股份有限公司 , 华能集团技术创新中心有限公司
IPC: G01S13/90
Abstract: 本发明公开一种船载SAR交轨干涉处理方法,包括以下步骤:前置滤波、块影像粗配准、块影像精配准、影像全局精配准、干涉图滤波、相位解缠、基于图像同名点的基线估计和基于控制点的基线估计;本发明包括主辅影像滤波、配准、干涉计算和干涉图的滤波、相位解缠等工作,针对船载双天线SAR的成像特点,图像配准采用了分块配准方法,利用块影像粗配准和块影像精配准,提高图像的相干系数,达到了较高的相干性;通过干涉图滤波确保了相干信息和滤波的结果在同一位置具有同样的大小,避免了滤波结果被重叠部分的相干值影响;通过基于图像同名点的基线估计方法和基于控制点的基线估计方法,实现毫米甚至亚毫米级的基线估计精度。
-
公开(公告)号:CN112540369A
公开(公告)日:2021-03-23
申请号:CN202011355738.1
申请日:2020-11-27
Applicant: 武汉大学 , 华能澜沧江水电股份有限公司 , 华能集团技术创新中心有限公司
Abstract: 本发明公开了一种融合GNSS与升降轨时序InSAR的滑坡三维形变解算方法,属于风险识别技术领域,用于解决现有检测方式结果不全面的技术问题。方法包括:获取目标监测区域GNSS监测周期内的多幅升、降轨雷达卫星原始影像;通过时序InSAR方法,获取目标监测区域升、降轨雷达视角下的地表形变;对目标监测区域升、降轨雷达视角下的地表形变进行三维方向上的分解;通过融合InSAR‑GNSS三维联合解算模型,计算目标监测区域的三维形变,根据所述三维形变,对目标监测区域进行滑坡识别。上述方法有效的解决了InSAR难以获取三维形变的问题,又实现了GNSS高时间分辨率和高平面位置精度与InSAR技术高空间分辨率和高程变形精度的有效统一,对获取滑坡三维形变场具有很高的实用性。
-
-
-
-
-
-
-
-
-