-
公开(公告)号:CN116485641B
公开(公告)日:2024-06-21
申请号:CN202310002134.6
申请日:2023-01-03
申请人: 南京大学
IPC分类号: G06T3/4053 , G06N3/0455 , G06N3/0464 , G06N3/088 , G06T17/05
摘要: 本发明涉及一种集成先验与地形约束的无监督DEM超分辨率重建方法,包括:准备单张低分辨率DEM影像;将低分辨率影像以有重叠的方式裁剪为固定大小的DEM格网单元;设计卷积神经网络,包括5个降采样模块、5个上采样模块及5个跳跃连接模块;以低分辨率DEM格网单元为约束,将噪声输入网络之中进行多次迭代,使用网络结构的深度先验对神经网络参数进行更新,使用神经网络编码生成格网高分辨率DEM;在迭代过程中,使用地形约束对DEM形态进行优化;对各格网单元执行上述编码、优化过程,最后拼接成原始大小的高分辨率DEM。本发明能够自动、快速、高效地根据低分辨率DEM生成高分辨率DEM。
-
公开(公告)号:CN116485641A
公开(公告)日:2023-07-25
申请号:CN202310002134.6
申请日:2023-01-03
申请人: 南京大学
IPC分类号: G06T3/40 , G06N3/0455 , G06N3/0464 , G06N3/088 , G06T17/05
摘要: 本发明涉及一种集成先验与地形约束的无监督DEM超分辨率重建方法,包括:准备单张低分辨率DEM影像;将低分辨率影像以有重叠的方式裁剪为固定大小的DEM格网单元;设计卷积神经网络,包括5个降采样模块、5个上采样模块及5个跳跃连接模块;以低分辨率DEM格网单元为约束,将噪声输入网络之中进行多次迭代,使用网络结构的深度先验对神经网络参数进行更新,使用神经网络编码生成格网高分辨率DEM;在迭代过程中,使用地形约束对DEM形态进行优化;对各格网单元执行上述编码、优化过程,最后拼接成原始大小的高分辨率DEM。本发明能够自动、快速、高效地根据低分辨率DEM生成高分辨率DEM。
-