-
公开(公告)号:CN109023286A
公开(公告)日:2018-12-18
申请号:CN201811060805.X
申请日:2018-09-11
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种复合梯度耐磨合金层及其制备方法,所述Mo/WC复合结构的梯度陶瓷耐磨合金层包括三个区域,分别为无孔洞杂质、呈致密堆砌结构的Mo‑W沉积层,成分、结构均由表及里呈梯度分布的Mo/WC陶瓷层及颗粒均匀、组织致密的离子注入C强化层。所述制备方法包括:第一步,离子注入C;第二步,通过双层辉光等离子合金化技术制备W‑Mo合金层。本发明相较于其他提高粉末冶金齿轮耐磨性能的方法,克服了单一技术存在的问题,实现了技术优势最大化,有利于显著提高粉末冶金齿轮的耐磨性能,有利于延长齿轮的使用寿命。
-
公开(公告)号:CN109023249B
公开(公告)日:2019-08-20
申请号:CN201811056100.0
申请日:2018-09-11
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种提高粉末冶金齿轮表面耐磨性能合金层及其制备方法,该合金层自上而下依次包括W‑Mo沉积层、W‑Mo‑Ti梯度陶瓷层和Ti强化层。其制备方法为:在粉末冶金齿轮表面离子注入Ti强化层;在Ti强化层表面用双辉等离子合金化法制备W‑Mo合金层。离子注入Ti会在齿轮表面形成注入层,钛离子与Fe生成的钛铁化合物在齿轮表面与对摩副之间起自润滑作用,有效降低了齿轮的摩擦系数和磨损率,提高了耐磨性能。经双辉等离子合金化制备的W‑Mo合金层包括W‑Mo沉积层和W‑Mo‑Ti扩散层,该扩散层成分由表及里呈梯度分布,与齿轮为冶金结合,提高了与齿轮的结合强度。
-
公开(公告)号:CN109023285A
公开(公告)日:2018-12-18
申请号:CN201811055651.5
申请日:2018-09-11
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种Ti(C、N)/Cr(C、N)复合梯度耐磨合金层及其制备方法,该合金层自上而下依次包括Ti‑Cr沉积层、Ti(C、N)/Cr(C、N)梯度陶瓷层和C、N强化层。制备方法包括以下步骤:(1)在粉末冶金齿轮表面离子注入C、N强化层;(2)在C、N强化层表面用双辉等离子合金化法制备Ti‑Cr合金层。C、N原子易与合金元素发生相互作用,产生氮化物、碳化物。在等离子合金化过程中,溅射出的Ti、Cr与离子注入的C、N发生反应,形成了具有Ti(C、N)/Cr(C、N)复合结构的梯度陶瓷耐磨合金层。本发明极大提高粉末冶金齿轮的耐磨性能,大幅延长了齿轮的使用寿命。
-
公开(公告)号:CN110923636B
公开(公告)日:2020-11-20
申请号:CN201911203572.9
申请日:2019-11-29
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种γ‑TiAl合金表面电子束复合等离子Ni‑Co‑Cr‑Al‑Si‑Pt‑Y合金化处理方法。本发明的处理方法包括以下步骤:(a)靶材为Ni‑Co‑Cr‑Al‑Si‑Pt‑Y靶材,靶材中各成分的质量百分比为15~20wt%Co,15~20wt%Cr,5~10wt%Al,2~4wt%Si,0~0.5wt%Pt,0~0.5wt%Y以及余量Ni,基体材料为γ‑TiAl合金;(b)在γ‑TiAl合金表面进行电子束预处理;(c)在γ‑TiAl合金表面进行双层辉光等离子Ni‑Co‑Cr‑Al‑Si‑Pt‑Y合金化,制备Ni‑Co‑Cr‑Al‑Si‑Pt‑Y合金层。本发明通过电子束预处理工艺对基体预处理,使双层辉光等离子表面合金化的工艺温度降低约200~250℃,同时所制备的Ni‑Co‑Cr‑Al‑Si‑Pt‑Y合金层中,元素的扩散深度显著增加,比较直接进行双层辉光等离子表面合金化的合金扩散层,厚度从3~5μm增加到7~9μm。
-
公开(公告)号:CN109306464B
公开(公告)日:2019-12-24
申请号:CN201811055964.0
申请日:2018-09-11
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种Ti/CrN复合结构的梯度陶瓷耐磨合金层及其制备方法,该合金层自上而下依次包括Ti‑Cr沉积层、Ti/CrN梯度陶瓷层和N强化层。其制备方法为:(1)在粉末冶金齿轮表面离子注入N强化层;(2)在N强化层表面用双辉等离子合金化法制备Ti‑Cr合金层。氮原子易与合金元素发生相互作用,形成的氮化物可提高耐磨性能。在等离子合金化过程中,溅射出的Ti、Cr离子与离子注入的N发生反应,形成了Ti/CrN复合结构的梯度陶瓷耐磨合金层。相较于其他提高粉末冶金齿轮耐磨性能的方法,本发明实现了两种技术优势最大化,极大提高了粉末冶金齿轮的耐磨性能,延长了齿轮的使用寿命。
-
公开(公告)号:CN109023249A
公开(公告)日:2018-12-18
申请号:CN201811056100.0
申请日:2018-09-11
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种提高粉末冶金齿轮表面耐磨性能合金层及其制备方法,该合金层自上而下依次包括W‑Mo沉积层、W‑Mo‑Ti梯度陶瓷层和Ti强化层。其制备方法为:在粉末冶金齿轮表面离子注入Ti强化层;在Ti强化层表面用双辉等离子合金化法制备W‑Mo合金层。离子注入Ti会在齿轮表面形成注入层,钛离子与Fe生成的钛铁化合物在齿轮表面与对摩副之间起自润滑作用,有效降低了齿轮的摩擦系数和磨损率,提高了耐磨性能。经双辉等离子合金化制备的W‑Mo合金层包括W‑Mo沉积层和W‑Mo‑Ti扩散层,该扩散层成分由表及里呈梯度分布,与齿轮为冶金结合,提高了与齿轮的结合强度。
-
公开(公告)号:CN109023286B
公开(公告)日:2020-11-20
申请号:CN201811060805.X
申请日:2018-09-11
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种复合梯度耐磨合金层及其制备方法,所述Mo/WC复合结构的梯度陶瓷耐磨合金层包括三个区域,分别为无孔洞杂质、呈致密堆砌结构的Mo‑W沉积层,成分、结构均由表及里呈梯度分布的Mo/WC陶瓷层及颗粒均匀、组织致密的离子注入C强化层。所述制备方法包括:第一步,离子注入C;第二步,通过双层辉光等离子合金化技术制备W‑Mo合金层。本发明相较于其他提高粉末冶金齿轮耐磨性能的方法,克服了单一技术存在的问题,实现了技术优势最大化,有利于显著提高粉末冶金齿轮的耐磨性能,有利于延长齿轮的使用寿命。
-
公开(公告)号:CN110923636A
公开(公告)日:2020-03-27
申请号:CN201911203572.9
申请日:2019-11-29
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种γ-TiAl合金表面电子束复合等离子Ni-Co-Cr-Al-Si-Pt-Y合金化处理方法。本发明的处理方法包括以下步骤:(a)靶材为Ni-Co-Cr-Al-Si-Pt-Y靶材,靶材中各成分的质量百分比为15~20wt%Co,15~20wt%Cr,5~10wt%Al,2~4wt%Si,0~0.5wt%Pt,0~0.5wt%Y以及余量Ni,基体材料为γ-TiAl合金;(b)在γ-TiAl合金表面进行电子束预处理;(c)在γ-TiAl合金表面进行双层辉光等离子Ni-Co-Cr-Al-Si-Pt-Y合金化,制备Ni-Co-Cr-Al-Si-Pt-Y合金层。本发明通过电子束预处理工艺对基体预处理,使双层辉光等离子表面合金化的工艺温度降低约200~250℃,同时所制备的Ni-Co-Cr-Al-Si-Pt-Y合金层中,元素的扩散深度显著增加,比较直接进行双层辉光等离子表面合金化的合金扩散层,厚度从3~5μm增加到7~9μm。
-
公开(公告)号:CN109023285B
公开(公告)日:2019-11-29
申请号:CN201811055651.5
申请日:2018-09-11
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种Ti(C、N)/Cr(C、N)复合梯度耐磨合金层及其制备方法,该合金层自上而下依次包括Ti‑Cr沉积层、Ti(C、N)/Cr(C、N)梯度陶瓷层和C、N强化层。制备方法包括以下步骤:(1)在粉末冶金齿轮表面离子注入C、N强化层;(2)在C、N强化层表面用双辉等离子合金化法制备Ti‑Cr合金层。C、N原子易与合金元素发生相互作用,产生氮化物、碳化物。在等离子合金化过程中,溅射出的Ti、Cr与离子注入的C、N发生反应,形成了具有Ti(C、N)/Cr(C、N)复合结构的梯度陶瓷耐磨合金层。本发明极大提高粉末冶金齿轮的耐磨性能,大幅延长了齿轮的使用寿命。
-
公开(公告)号:CN109306464A
公开(公告)日:2019-02-05
申请号:CN201811055964.0
申请日:2018-09-11
Applicant: 南京航空航天大学
Abstract: 本发明公开了一种Ti/CrN复合结构的梯度陶瓷耐磨合金层及其制备方法,该合金层自上而下依次包括Ti-Cr沉积层、Ti/CrN梯度陶瓷层和N强化层。其制备方法为:(1)在粉末冶金齿轮表面离子注入N强化层;(2)在N强化层表面用双辉等离子合金化法制备Ti-Cr合金层。氮原子易与合金元素发生相互作用,形成的氮化物可提高耐磨性能。在等离子合金化过程中,溅射出的Ti、Cr离子与离子注入的N发生反应,形成了Ti/CrN复合结构的梯度陶瓷耐磨合金层。相较于其他提高粉末冶金齿轮耐磨性能的方法,本发明实现了两种技术优势最大化,极大提高了粉末冶金齿轮的耐磨性能,延长了齿轮的使用寿命。
-
-
-
-
-
-
-
-
-