-
公开(公告)号:CN118388817A
公开(公告)日:2024-07-26
申请号:CN202410543789.9
申请日:2024-04-30
申请人: 南昌大学共青城光氢储技术研究院 , 江西民强新材料技术有限公司
IPC分类号: C08J5/18 , C08L79/08 , C08K9/10 , C08K3/38 , C08K7/00 , C08K9/02 , C08K9/06 , C08K3/36 , C08K3/22 , C09K5/14
摘要: 本发明提供了一种高导热聚酰亚胺薄膜及其制备方法与应用,涉及聚酰亚胺薄膜技术领域。本发明提供的制备方法包括以下步骤:将导热填料与氧化硼混合进行高温氮化,制得具有氮化硼包覆结构的氮化填料;将氮化填料与氮化硼纳米片分散于改性溶液并分离干燥,制得改性填料;将改性填料与聚酰胺酸胶液搅拌混合制得复合胶液,对复合胶液进行涂覆成膜并亚胺化制得高导热聚酰亚胺薄膜。本发明能够显著提高聚酰亚胺薄膜的面外导热率,同时方法简单易于大规模工业化投产。
-
公开(公告)号:CN118206783A
公开(公告)日:2024-06-18
申请号:CN202410227058.3
申请日:2024-02-29
申请人: 南昌大学共青城光氢储技术研究院 , 江西民强新材料技术有限公司
摘要: 本发明提供了一种聚酰亚胺薄膜及其制备方法与应用,涉及聚酰亚胺薄膜制备技术领域。本发明提供的制备方法包括以下步骤:将二胺与二酐在极性非质子溶剂缩聚制得聚酰胺酸胶液;将无机纳米氮氧化硅粉末进行表面改性制得改性填料;将所述改性填料以质量比0.1‑2.0%添加至所述聚酰亚胺胶液搅拌分散制得复合胶液;将所述复合胶液涂覆成膜后干燥并亚胺化处理制得聚酰亚胺薄膜。本发明通过引入改性填料能够在聚酰亚胺体系中形成良好的界面结合,改善聚酰亚胺薄膜的综合性能,有效提高薄膜的耐热性、力学性能和柔韧性,并降低线性膨胀系数。
-
公开(公告)号:CN118878899A
公开(公告)日:2024-11-01
申请号:CN202411105365.0
申请日:2024-08-13
申请人: 南昌大学共青城光氢储技术研究院 , 中国工程物理研究院总体工程研究所 , 江西民强新材料技术有限公司
摘要: 本发明提供了一种隔热聚酰亚胺复合薄膜及其制备方法与应用,涉及聚酰亚胺薄膜技术领域。本发明提供的复合薄膜包括聚酰亚胺基膜及依次成型在所述聚酰亚胺基膜表面的空心微球层和金属反射层,且所述空心微球层和所述聚酰亚胺基膜发生相互渗透。本发明将空心微球层成型在聚酰亚胺基膜表面,能够起到显著隔热的效果,并且对复合薄膜的力学性能无负面影响,同时成型凹凸镜面金属反射层能够提高反射面积,调节辐射率,从而进一步提高复合薄膜隔热性能。
-
公开(公告)号:CN118292261A
公开(公告)日:2024-07-05
申请号:CN202410414970.X
申请日:2024-04-08
申请人: 南昌大学共青城光氢储技术研究院 , 江西民强新材料技术有限公司
IPC分类号: D06M11/80 , D04H1/728 , D04H1/4326 , D04H1/4382 , D06M11/82 , C08G73/10 , D06M101/30
摘要: 本发明涉及聚酰亚胺纤维膜制备技术领域,尤其涉及一种聚酰亚胺复合纳米纤维膜及其制备方法,聚酰亚胺复合纳米纤维膜的制备方法包括如下步骤:对聚酰胺酸溶液进行静电纺丝,得到聚酰胺酸纳米纤维膜;在所述聚酰胺酸纳米纤维膜表面覆盖氧化硼粉体,得到样品;对所述样品进行高温同步亚胺化与氮化包覆处理,得到表面包覆氮化硼纳米层的聚酰亚胺复合纳米纤维膜。本发明通过氧化硼熔融氮化,实现聚酰亚胺纤维丝表面包覆氮化硼纳米层,从而达到聚酰亚胺复合纳米纤维膜对电解液润湿性性能提升目的;且氧化硼熔体使得聚酰亚胺纤维丝之间实现化学交联,达到聚酰亚胺复合纳米纤维膜力学性能提高目的。
-
公开(公告)号:CN118256109A
公开(公告)日:2024-06-28
申请号:CN202410398074.9
申请日:2024-04-03
申请人: 南昌大学共青城光氢储技术研究院 , 江西民强新材料技术有限公司
IPC分类号: C09D7/61 , H01M50/449 , H01M50/446 , H01M50/403 , H01M10/0525 , C09D133/04
摘要: 本发明提供了一种锂离子电池隔膜涂料及其制备方法与应用,涉及锂电池隔膜涂料技术领域。本发明提供的锂离子电池隔膜涂料包括质量分数为16%‑35%的氮氧化硅组合物,且所述氮氧化硅组合物包括相互混杂的氮氧化硅颗粒与氮氧化硅纳米线。本发明通过向涂料中加入氮氧化硅组合物,当涂料在隔膜表面成型为涂层时,由于氮氧化硅表面具有丰富的羟基与胺基,能够显著提高隔膜的润湿性,同时氮氧化硅颗粒能够被锚定在氮氧化硅纳米线所形成的骨架网络中,从而避免氮氧化硅颗粒阻塞隔膜孔隙。
-
公开(公告)号:CN114632433B
公开(公告)日:2023-05-09
申请号:CN202210407243.1
申请日:2022-04-18
申请人: 南昌大学共青城光氢储技术研究院
摘要: 本发明公开了一种柔性三维自支撑贵金属‑碳纤维网络材料的制备方法,首先将纺丝制得的含贵金属盐聚酰胺酸纤维膜进行预压延处理,使蓬松结构的各纤维丝达到物理接触,随后将压延处理的含贵金属盐聚酰胺酸纤维膜在化学亚胺化溶剂中浸润,同步实现化学亚胺化与原位微溶解交联,随后进行亚胺化及碳化处理,得到柔性三维交联自支撑贵金属‑碳纤维膜。本发明采用预压延‑溶剂原位微溶接‑化学亚胺化交联相结合的三重交联法,构建三维交联聚酰亚胺网络结构。在随后的碳化过程中,继承此交联结构,形成三维自支撑贵金属‑碳网络材料,实现贵金属‑碳纤维膜的柔性和机械强度提升之目的。
-
公开(公告)号:CN115569610A
公开(公告)日:2023-01-06
申请号:CN202211186424.2
申请日:2022-09-27
申请人: 南昌大学共青城光氢储技术研究院
IPC分类号: B01J3/04 , C04B35/584 , C04B35/622
摘要: 本发明公开了一种超长定向α相氮化硅纤维阵列的生产装置及其制备方法,装置包括反应匣钵和高温合成炉;所述反应匣钵由氮化硅基板、陶瓷挡板和陶瓷盖板组成;所述高温合成炉为真空高温炉,其腔室排布有抽真空口、进气口、出气口、紧急泄压口以及真空压力表。利用这种装置,在没有任何金属或金属催化盐的条件下,以氨气和四卤化硅为源气体,在高温下进行反应,制备超长定向α相氮化硅纤维阵列。本发明制备装置简单,由氮化硅基板、陶瓷挡板和中心带圆孔的陶瓷盖板组成的匣钵为氮化硅纤维提供了生长衬底,通过堆叠匣钵,可以实现氮化硅纤维阵列的规模化制备。本发明无需任何金属及金属盐催化剂即可制备超长α相氮化硅纤维阵列,无金属杂质存在。
-
公开(公告)号:CN118004979A
公开(公告)日:2024-05-10
申请号:CN202410116645.5
申请日:2024-01-27
申请人: 南昌大学共青城光氢储技术研究院
IPC分类号: C01B21/068
摘要: 本发明提供了一种基于光伏硅切割锯屑制备β相氮化硅的方法,涉及非氧化陶瓷材料制备技术领域。本发明提供的方法包括以下步骤:将光伏硅切割锯屑置于混合酸液酸洗2.5‑3.5h后,洗涤干燥制得锯屑原料;其中,所述锯屑原料中金属杂质小于10ppm,氧含量小于2%;将锯屑原料在200‑300℃的氮气气氛中热处理2‑5h后,将锯屑原料在氮气流量450‑550mL/min、温度1475‑1485℃的环境中保温1‑5h热爆氮化后,随炉冷却制得氮化硅样品;刮除所述氮化硅样品表面1.5‑2.5mm的疏松层后破碎,将破碎产物浸泡于氢氟酸液中酸洗10‑30min后,洗涤干燥制得β相氮化硅;所述β相氮化硅中β相含量大于95%,氧含量小于1%。本发明能够对光伏硅锯屑进行高值回收,并且对β相氮化硅的合成工艺简单,成本低廉适合大规模的工业化生产。
-
公开(公告)号:CN114709416B
公开(公告)日:2024-01-05
申请号:CN202210407166.X
申请日:2022-04-18
申请人: 南昌大学共青城光氢储技术研究院
IPC分类号: H01M4/587 , H01M4/04 , D01F6/74 , D04H1/728 , H01M10/0525
摘要: 本发明公开了一种柔性三维交联自支撑碳纤维网络负极材料的制备方法,首先将纺丝制得的聚酰胺酸纤维膜进行预压延处理,使蓬松结构的各纤维丝达到物理接触,随后将压延处理的聚酰胺酸纤维膜在化学亚胺化溶剂中浸润,同步实现化学亚胺化与原位微溶解交联,随后进行亚胺化及碳化处理,得到柔性三维交联自支撑碳纤维膜。本发明采用预压延‑溶剂原位微溶接‑化学亚胺化交联相结合的三重交联法,构建三维交联聚酰亚胺网络结构。在随后的碳化过程中,继承此交联结构,形成三维自支撑碳纤维网络材料,实现碳纤维膜的柔性和机械强度提升之目的。
-
公开(公告)号:CN114632433A
公开(公告)日:2022-06-17
申请号:CN202210407243.1
申请日:2022-04-18
申请人: 南昌大学共青城光氢储技术研究院
摘要: 本发明公开了一种柔性三维自支撑贵金属‑碳纤维网络材料的制备方法,首先将纺丝制得的含贵金属盐聚酰胺酸纤维膜进行预压延处理,使蓬松结构的各纤维丝达到物理接触,随后将压延处理的含贵金属盐聚酰胺酸纤维膜在化学亚胺化溶剂中浸润,同步实现化学亚胺化与原位微溶解交联,随后进行亚胺化及碳化处理,得到柔性三维交联自支撑贵金属‑碳纤维膜。本发明采用预压延‑溶剂原位微溶接‑化学亚胺化交联相结合的三重交联法,构建三维交联聚酰亚胺网络结构。在随后的碳化过程中,继承此交联结构,形成三维自支撑贵金属‑碳网络材料,实现贵金属‑碳纤维膜的柔性和机械强度提升之目的。
-
-
-
-
-
-
-
-
-