-
公开(公告)号:CN116705065A
公开(公告)日:2023-09-05
申请号:CN202310692879.X
申请日:2023-06-12
Applicant: 南昌工程学院
Inventor: 姚先哲 , 丁贵立 , 康兵 , 许志浩 , 王宗耀 , 刘文轩 , 章彧涵 , 李斌 , 高家通 , 蒋善旗 , 戴永熙 , 杨梓萌 , 徐一舟 , 李雨彤 , 何登旋 , 单惠敏
Abstract: 本发明公开了一种基于LSTM‑BHPSO的变电站声纹故障诊断方法,采集变电站声纹信号,并使用MFCC进行特征提取,得到特征数据集,将特征数据集分为训练集和测试集;构建基于LSTM网络的变电站声纹故障诊断模型;将MFCC提取的特征点数量、批处理样本数、网络层个数、隐含层与全连接层的个数作为粒子的位置使用BHPSO算法进行迭代寻优得到最优初始参数,将最优初始参数输入基于LSTM网络的变电站声纹故障诊断模型;使用训练好的基于LSTM网络的变电站声纹故障诊断模型进行变电站声纹故障诊断。本发明具有较好的处理效率,可以避免局部最优,有利于获得准确的故障诊断结果。
-
公开(公告)号:CN116682458A
公开(公告)日:2023-09-01
申请号:CN202310687573.5
申请日:2023-06-12
Applicant: 南昌工程学院
Inventor: 李斌 , 王宗耀 , 何言 , 康兵 , 许志浩 , 丁贵立 , 刘文轩 , 章彧涵 , 高家通 , 蒋善旗 , 戴永熙 , 杨梓萌 , 徐一舟 , 李雨彤 , 何登旋 , 单惠敏
IPC: G10L25/51 , G10L25/30 , G10L21/0208
Abstract: 本发明公开一种基于能量算子改进小波包的GIS局放声纹检测方法,选取小波包基函数对GIS声纹信号进行小波包分解、降噪,采用改进Teager能量算子小波包系数进行瞬时能量计算,得到瞬时能量序列,结合滑动窗口函数进行背景阈值判断,将能量异常点进行记录;而后结合峭度熵、模糊熵、瞬时能量以及能量异常点构建联合特征,使用RBF神经网络算法进行故障判定。本发明快速准确的发现GIS运行隐患。
-
公开(公告)号:CN116430188A
公开(公告)日:2023-07-14
申请号:CN202310697668.5
申请日:2023-06-13
Applicant: 南昌工程学院
Inventor: 章彧涵 , 康兵 , 高家通 , 王宗耀 , 丁贵立 , 许志浩 , 刘文轩 , 李斌 , 戴永熙 , 李雨彤 , 何言 , 蒋善旗 , 何登旋 , 杨梓萌 , 徐一舟 , 单惠敏
IPC: G01R31/12 , G06N3/006 , G06F18/213 , G06N20/00
Abstract: 本发明属于电力设备故障诊断技术领域,公开了一种基于改进白冠鸡优化算法的变压器故障声纹诊断方法,将变压器声音信号进行去噪,使用权重时移多尺度反向波动散布熵对分离出变压器本体声音信号计算时移尺度内的特征量并进行归一化,使用拉普拉斯得分选出最优特征维度,将核极限学习机的核函数参数和正则化因子以及权重时移多尺度反向波动散布熵的权重作为改进白冠鸡优化算法的初始种群位置进行寻优,对核极限学习机进行训练,得到变压器故障诊断模型,用于变压器的故障诊断。本发明解决了核极限学习机的超参和权重时移多尺度反向波动散布熵的权重难以准确选取的问题,能够实时准确的输出变压器内部的情况。
-
公开(公告)号:CN116430188B
公开(公告)日:2023-08-29
申请号:CN202310697668.5
申请日:2023-06-13
Applicant: 南昌工程学院
Inventor: 章彧涵 , 康兵 , 高家通 , 王宗耀 , 丁贵立 , 许志浩 , 刘文轩 , 李斌 , 戴永熙 , 李雨彤 , 何言 , 蒋善旗 , 何登旋 , 杨梓萌 , 徐一舟 , 单惠敏
IPC: G01R31/12 , G06N3/006 , G06F18/213 , G06N20/00
Abstract: 本发明属于电力设备故障诊断技术领域,公开了一种基于改进白冠鸡优化算法的变压器故障声纹诊断方法,将变压器声音信号进行去噪,使用权重时移多尺度反向波动散布熵对分离出变压器本体声音信号计算时移尺度内的特征量并进行归一化,使用拉普拉斯得分选出最优特征维度,将核极限学习机的核函数参数和正则化因子以及权重时移多尺度反向波动散布熵的权重作为改进白冠鸡优化算法的初始种群位置进行寻优,对核极限学习机进行训练,得到变压器故障诊断模型,用于变压器的故障诊断。本发明解决了核极限学习机的超参和权重时移多尺度反向波动散布熵的权重难以准确选取的问题,能够实时准确的输出变压器内部的情况。
-
公开(公告)号:CN115687955A
公开(公告)日:2023-02-03
申请号:CN202310000646.9
申请日:2023-01-03
Applicant: 南昌工程学院
IPC: G06F18/23211 , G06F18/213 , G06Q50/06 , H02J13/00
Abstract: 本发明属于电力负荷监测技术领域,公开了一种基于投票表决的居民用户负荷曲线聚类方法及装置,该方法通过集成树拟合实现高维数据降维,采用轮廓系数确定最佳聚类数目;以CH准则确定基准聚类算法,最后通过一致性函数矩阵统一集成聚类结果。本发明可综合各成员聚类算法的优势,在聚类精度、聚类效果、鲁棒性方面具有很大的提升效果,可以精准的识别用户的用能特性。
-
-
-
-